Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,896 Bytes
0f079b2 c459ff0 94cabf8 c459ff0 0f079b2 94cabf8 0f079b2 c459ff0 0f079b2 c459ff0 0f079b2 82ba93f c459ff0 0f079b2 c459ff0 0f079b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
import argparse
import os
import json
import torch
import sys
import time
import importlib
import numpy as np
from omegaconf import OmegaConf
from huggingface_hub import hf_hub_download
from collections import OrderedDict
import trimesh
from einops import repeat, rearrange
import pytorch_lightning as pl
from typing import Dict, Optional, Tuple, List
import gradio as gr
from utils import *
proj_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(os.path.join(proj_dir))
import tempfile
import spaces
import craftsman
from craftsman.systems.base import BaseSystem
from craftsman.utils.config import ExperimentConfig, load_config
from mv_models import GenMVImage
_TITLE = '''CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner'''
_DESCRIPTION = '''
<div>
Select or upload a image, then just click 'Generate'.
<br>
By mimicking the artist/craftsman modeling workflow, we propose CraftsMan (aka ε εΏ) that uses 3D Latent Set Diffusion Model that directly generate coarse meshes,
then a multi-view normal enhanced image generation model is used to refine the mesh.
We provide the coarse 3D diffusion part here.
<br>
If you found Crafts is helpful, please help to β the <a href='https://github.com/wyysf-98/CraftsMan/' target='_blank'>Github Repo</a>. Thanks!
<a style="display:inline-block; margin-left: .5em" href='https://github.com/wyysf-98/CraftsMan/'><img src='https://img.shields.io/github/stars/wyysf-98/CraftsMan?style=social' /></a>
<br>
*please note that the model is fliped due to the gradio viewer, please download the obj file and you will get the correct mesh.
<br>
*If you have your own multi-view images, you can directly upload it.
</div>
'''
_CITE_ = r"""
---
π **Citation**
If you find our work useful for your research or applications, please cite using this bibtex:
```bibtex
@article{craftsman,
author = {Weiyu Li and Jiarui Liu and Rui Chen and Yixun Liang and Xuelin Chen and Ping Tan and Xiaoxiao Long},
title = {CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner},
journal = {arxiv:xxx},
year = {2024},
}
```
π€ **Acknowledgements**
We use <a href='https://github.com/wjakob/instant-meshes' target='_blank'>Instant Meshes</a> to remesh the generated mesh to a lower face count, thanks to the authors for the great work.
π **License**
CraftsMan is under [AGPL-3.0](https://www.gnu.org/licenses/agpl-3.0.en.html), so any downstream solution and products (including cloud services) that include CraftsMan code or a trained model (both pretrained or custom trained) inside it should be open-sourced to comply with the AGPL conditions. If you have any questions about the usage of CraftsMan, please contact us first.
π§ **Contact**
If you have any questions, feel free to open a discussion or contact us at <b>weiyuli.cn@gmail.com</b>.
"""
model = None
cached_dir = None
@spaces.GPU
def image2mesh(view_front: np.ndarray,
view_right: np.ndarray,
view_back: np.ndarray,
view_left: np.ndarray,
more: bool = False,
scheluder_name: str ="DDIMScheduler",
guidance_scale: int = 7.5,
seed: int = 4,
octree_depth: int = 7):
sample_inputs = {
"mvimages": [[
Image.fromarray(view_front),
Image.fromarray(view_right),
Image.fromarray(view_back),
Image.fromarray(view_left)
]]
}
global model
latents = model.sample(
sample_inputs,
sample_times=1,
guidance_scale=guidance_scale,
return_intermediates=False,
seed=seed
)[0]
# decode the latents to mesh
box_v = 1.1
mesh_outputs, _ = model.shape_model.extract_geometry(
latents,
bounds=[-box_v, -box_v, -box_v, box_v, box_v, box_v],
octree_depth=octree_depth
)
assert len(mesh_outputs) == 1, "Only support single mesh output for gradio demo"
mesh = trimesh.Trimesh(mesh_outputs[0][0], mesh_outputs[0][1])
# filepath = f"{cached_dir}/{time.time()}.obj"
filepath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
mesh.export(filepath, include_normals=True)
if 'Remesh' in more:
remeshed_filepath = tempfile.NamedTemporaryFile(suffix=f"_remeshed.obj", delete=False).name
print("Remeshing with Instant Meshes...")
target_face_count = int(len(mesh.faces)/10)
# command = f"{proj_dir}/apps/third_party/InstantMeshes {filepath} -f {target_face_count} -d -S 0 -r 6 -p 6 -o {filepath.replace('.obj', '_remeshed.obj')}"
# command = f"{proj_dir}/apps/third_party/InstantMeshes {filepath} -f {target_face_count} -d -S 0 -r 4 -p 4 -o {filepath.replace('.obj', '_remeshed.obj')}"
# command = f"{proj_dir}/apps/third_party/InstantMeshes {filepath} -f {target_face_count} -o {filepath.replace('.obj', '_remeshed.obj')}"
command = f"{proj_dir}/apps/third_party/quadriflow -i {filepath} -f {target_face_count} -o {remeshed_filepath}"
os.system(command)
filepath = remeshed_filepath
# filepath = filepath.replace('.obj', '_remeshed.obj')
return filepath
if __name__=="__main__":
parser = argparse.ArgumentParser()
# parser.add_argument("--model_path", type=str, required=True, help="Path to the object file",)
parser.add_argument("--cached_dir", type=str, default="./gradio_cached_dir")
parser.add_argument("--device", type=int, default=0)
args = parser.parse_args()
cached_dir = args.cached_dir
os.makedirs(args.cached_dir, exist_ok=True)
device = torch.device(f"cuda:{args.device}" if torch.cuda.is_available() else "cpu")
print(f"using device: {device}")
# for multi-view images generation
background_choice = OrderedDict({
"Alpha as Mask": "Alpha as Mask",
"Auto Remove Background": "Auto Remove Background",
"Original Image": "Original Image",
})
mvimg_model_config_list = ["CRM", "ImageDream", "Wonder3D"]
# for 3D latent set diffusion
# for 3D latent set diffusion
ckpt_path = hf_hub_download(repo_id="wyysf/CraftsMan", filename="image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/model.ckpt", repo_type="model")
config_path = hf_hub_download(repo_id="wyysf/CraftsMan", filename="image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/config.yaml", repo_type="model")
scheluder_dict = OrderedDict({
"DDIMScheduler": 'diffusers.schedulers.DDIMScheduler',
# "DPMSolverMultistepScheduler": 'diffusers.schedulers.DPMSolverMultistepScheduler', # not support yet
# "UniPCMultistepScheduler": 'diffusers.schedulers.UniPCMultistepScheduler', # not support yet
})
# main GUI
custom_theme = gr.themes.Soft(primary_hue="blue").set(
button_secondary_background_fill="*neutral_100",
button_secondary_background_fill_hover="*neutral_200")
custom_css = '''#disp_image {
text-align: center; /* Horizontally center the content */
}'''
with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown('# ' + _TITLE)
gr.Markdown(_DESCRIPTION)
with gr.Row():
with gr.Column(scale=2):
with gr.Row():
image_input = gr.Image(
label="Image Input",
image_mode="RGBA",
sources="upload",
type="pil",
)
with gr.Row():
text = gr.Textbox(label="Prompt (Optional, only works for mvdream)", visible=False)
with gr.Row():
gr.Markdown('''Try a different <b>seed</b> if the result is unsatisfying. Good Luck :)''')
with gr.Row():
seed = gr.Number(42, label='Seed', show_label=True)
more = gr.CheckboxGroup(["Remesh", "Symmetry(TBD)"], label="More", show_label=False)
# remesh = gr.Checkbox(value=False, label='Remesh')
# symmetry = gr.Checkbox(value=False, label='Symmetry(TBD)', interactive=False)
run_btn = gr.Button('Generate', variant='primary', interactive=True)
with gr.Row():
gr.Examples(
examples=[os.path.join("./apps/examples", i) for i in os.listdir("./apps/examples")],
inputs=[image_input],
examples_per_page=8
)
with gr.Column(scale=4):
with gr.Row():
output_model_obj = gr.Model3D(
label="Output Model (OBJ Format)",
camera_position=(90.0, 90.0, 3.5),
interactive=False,
)
with gr.Row():
view_front = gr.Image(label="Front", interactive=True, show_label=True)
view_right = gr.Image(label="Right", interactive=True, show_label=True)
view_back = gr.Image(label="Back", interactive=True, show_label=True)
view_left = gr.Image(label="Left", interactive=True, show_label=True)
with gr.Accordion('Advanced options', open=False):
with gr.Row(equal_height=True):
run_mv_btn = gr.Button('Only Generate 2D', interactive=True)
run_3d_btn = gr.Button('Only Generate 3D', interactive=True)
with gr.Accordion('Advanced options (2D)', open=False):
with gr.Row():
crop_size = gr.Number(224, label='Crop size')
mvimg_model = gr.Dropdown(value="CRM", label="MV Image Model", choices=mvimg_model_config_list)
with gr.Row():
foreground_ratio = gr.Slider(
label="Foreground Ratio",
minimum=0.5,
maximum=1.0,
value=1.0,
step=0.05,
)
with gr.Row():
background_choice = gr.Dropdown(label="Backgroud Choice", value="Auto Remove Background",choices=list(background_choice.keys()))
rmbg_type = gr.Dropdown(label="Backgroud Remove Type", value="rembg",choices=['sam', "rembg"])
backgroud_color = gr.ColorPicker(label="Background Color", value="#FFFFFF", interactive=True)
with gr.Row():
mvimg_guidance_scale = gr.Number(value=3.5, minimum=3, maximum=10, label="2D Guidance Scale")
mvimg_steps = gr.Number(value=50, minimum=20, maximum=100, label="2D Sample Steps", precision=0)
with gr.Accordion('Advanced options (3D)', open=False):
with gr.Row():
guidance_scale = gr.Number(label="3D Guidance Scale", value=7.5, minimum=3.0, maximum=10.0)
steps = gr.Number(value=50, minimum=20, maximum=100, label="3D Sample Steps", precision=0)
with gr.Row():
scheduler = gr.Dropdown(label="scheluder", value="DDIMScheduler",choices=list(scheluder_dict.keys()))
octree_depth = gr.Slider(label="Octree Depth", value=7, minimum=4, maximum=8, step=1)
gr.Markdown(_CITE_)
outputs = [output_model_obj]
rmbg = RMBG(device)
gen_mvimg = GenMVImage(device)
model = load_model(ckpt_path, config_path, device)
run_btn.click(fn=check_input_image, inputs=[image_input]
).success(
fn=rmbg.run,
inputs=[rmbg_type, image_input, crop_size, foreground_ratio, background_choice, backgroud_color],
outputs=[image_input]
).success(
fn=gen_mvimg.run,
inputs=[mvimg_model, text, image_input, crop_size, seed, mvimg_guidance_scale, mvimg_steps],
outputs=[view_front, view_right, view_back, view_left]
).success(
fn=image2mesh,
inputs=[view_front, view_right, view_back, view_left, more, scheduler, guidance_scale, seed, octree_depth],
outputs=outputs,
api_name="generate_img2obj")
run_mv_btn.click(fn=gen_mvimg.run,
inputs=[mvimg_model, text, image_input, crop_size, seed, mvimg_guidance_scale, mvimg_steps],
outputs=[view_front, view_right, view_back, view_left]
)
run_3d_btn.click(fn=image2mesh,
inputs=[view_front, view_right, view_back, view_left, more, scheduler, guidance_scale, seed, octree_depth],
outputs=outputs,
api_name="generate_img2obj")
demo.queue().launch(share=True, allowed_paths=[args.cached_dir]) |