File size: 15,390 Bytes
0f079b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8133633
0f079b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8133633
0f079b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8133633
 
 
0f079b2
 
 
8133633
 
 
0f079b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8133633
0f079b2
 
 
 
8133633
0f079b2
8133633
 
 
0f079b2
 
 
 
8133633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f079b2
8133633
 
0f079b2
8133633
 
0f079b2
 
8133633
0f079b2
 
 
 
8133633
 
0f079b2
8133633
 
0f079b2
 
8133633
0f079b2
 
 
 
 
8133633
0f079b2
 
 
 
 
 
8133633
0f079b2
 
 
 
 
 
 
 
 
 
8133633
0f079b2
 
 
 
 
 
 
8133633
0f079b2
 
 
8133633
0f079b2
 
 
8133633
0f079b2
8133633
0f079b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8133633
0f079b2
 
 
 
 
8133633
 
0f079b2
8133633
0f079b2
 
 
 
 
 
 
 
 
 
 
8133633
 
0f079b2
 
 
 
 
 
8133633
0f079b2
 
 
 
 
 
 
 
 
 
 
 
 
 
8133633
0f079b2
 
 
8133633
0f079b2
 
 
 
 
 
 
 
 
 
 
 
 
8133633
0f079b2
8133633
0f079b2
 
8133633
0f079b2
 
 
 
 
 
 
 
8133633
 
0f079b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8133633
 
0f079b2
 
 
8133633
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
from dataclasses import dataclass, field

import numpy as np
import json
import copy
import torch
import torch.nn.functional as F
from skimage import measure
from einops import repeat
from tqdm import tqdm
from PIL import Image

from diffusers import (
    DDPMScheduler,
    DDIMScheduler,
    UniPCMultistepScheduler,
    KarrasVeScheduler,
    DPMSolverMultistepScheduler
)

import craftsman
from craftsman.systems.base import BaseSystem
from craftsman.utils.misc import get_rank
from craftsman.utils.typing import *
from diffusers import DDIMScheduler

def compute_snr(noise_scheduler, timesteps):
    """
    Computes SNR as per
    https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
    """
    alphas_cumprod = noise_scheduler.alphas_cumprod
    sqrt_alphas_cumprod = alphas_cumprod**0.5
    sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5

    # Expand the tensors.
    # Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
    sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
    while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
        sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
    alpha = sqrt_alphas_cumprod.expand(timesteps.shape)

    sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
    while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
        sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None]
    sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)

    # Compute SNR.
    snr = (alpha / sigma) ** 2
    return snr


def ddim_sample(ddim_scheduler: DDIMScheduler,
                diffusion_model: torch.nn.Module,
                shape: Union[List[int], Tuple[int]],
                cond: torch.FloatTensor,
                steps: int,
                eta: float = 0.0,
                guidance_scale: float = 3.0,
                do_classifier_free_guidance: bool = True,
                generator: Optional[torch.Generator] = None,
                device: torch.device = "cuda:0",
                disable_prog: bool = True):

    assert steps > 0, f"{steps} must > 0."

    # init latents
    bsz = cond.shape[0]
    if do_classifier_free_guidance:
        bsz = bsz // 2

    latents = torch.randn(
        (bsz, *shape),
        generator=generator,
        device=cond.device,
        dtype=cond.dtype,
    )
    # scale the initial noise by the standard deviation required by the scheduler
    latents = latents * ddim_scheduler.init_noise_sigma
    # set timesteps
    ddim_scheduler.set_timesteps(steps)
    timesteps = ddim_scheduler.timesteps.to(device)
    # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
    # eta (η) is only used with the DDIMScheduler, and between [0, 1]
    extra_step_kwargs = {
        # "eta": eta,
        "generator": generator
    }

    # reverse
    for i, t in enumerate(tqdm(timesteps, disable=disable_prog, desc="DDIM Sampling:", leave=False)):
        # expand the latents if we are doing classifier free guidance
        latent_model_input = (
            torch.cat([latents] * 2)
            if do_classifier_free_guidance
            else latents
        )
        # predict the noise residual
        timestep_tensor = torch.tensor([t], dtype=torch.long, device=device)
        timestep_tensor = timestep_tensor.expand(latent_model_input.shape[0])
        noise_pred = diffusion_model.forward(latent_model_input, timestep_tensor, cond)

        # perform guidance
        if do_classifier_free_guidance:
            noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
            noise_pred = noise_pred_uncond + guidance_scale * (
                    noise_pred_text - noise_pred_uncond
            )

        # compute the previous noisy sample x_t -> x_t-1
        latents = ddim_scheduler.step(
            noise_pred, t, latents, **extra_step_kwargs
        ).prev_sample

        yield latents, t


# DEBUG = True
@craftsman.register("pixart-diffusion-system")
class PixArtDiffusionSystem(BaseSystem):
    @dataclass
    class Config(BaseSystem.Config):
        val_samples_json: str = None
        extract_mesh_func: str = "mc"

        # diffusion config
        z_scale_factor: float = 1.0
        guidance_scale: float = 7.5
        num_inference_steps: int = 50
        eta: float = 0.0
        snr_gamma: float = 5.0

        # shape vae model
        shape_model_type: str = None
        shape_model: dict = field(default_factory=dict)

        # condition model
        condition_model_type: str = None
        condition_model: dict = field(default_factory=dict)

        # diffusion model
        denoiser_model_type: str = None
        denoiser_model: dict = field(default_factory=dict)

        # noise scheduler
        noise_scheduler_type: str = None
        noise_scheduler: dict = field(default_factory=dict)

        # denoise scheduler
        denoise_scheduler_type: str = None
        denoise_scheduler: dict = field(default_factory=dict)

    cfg: Config

    def configure(self):
        super().configure()

        self.shape_model = craftsman.find(self.cfg.shape_model_type)(self.cfg.shape_model)
        self.shape_model.eval()
        self.shape_model.requires_grad_(False)

        self.condition = craftsman.find(self.cfg.condition_model_type)(self.cfg.condition_model)
        
        self.denoiser_model = craftsman.find(self.cfg.denoiser_model_type)(self.cfg.denoiser_model)

        self.noise_scheduler = craftsman.find(self.cfg.noise_scheduler_type)(**self.cfg.noise_scheduler)

        self.denoise_scheduler = craftsman.find(self.cfg.denoise_scheduler_type)(**self.cfg.denoise_scheduler)

    def forward(self, batch: Dict[str, Any], skip_noise=False) -> Dict[str, Any]:
        # 1. encode shape latents
        shape_embeds, kl_embed, _ = self.shape_model.encode(
            batch["surface"][..., :3 + self.cfg.shape_model.point_feats], 
            sample_posterior=True
        )

        latents = kl_embed * self.cfg.z_scale_factor

        # 2. gain condition. assert not (text_cond and image_cond), "Only one of text or image condition must be provided."
        if "image" in batch and batch['image'].dim() == 5:
            if self.training:
                bs, n_images = batch['image'].shape[:2]
                batch['image'] = batch['image'].view(bs*n_images, *batch['image'].shape[-3:])
            else:
                batch['image'] = batch['image'][:, 0, ...]
                n_images = 1
                bs = batch['image'].shape[0]
            cond_latents = self.condition(batch).to(latents)
            latents = latents.unsqueeze(1).repeat(1, n_images, 1, 1)
            latents = latents.view(bs*n_images, *latents.shape[-2:])
        else:
            cond_latents = self.condition(batch).to(latents)
            cond_latents = cond_latents.view(cond_latents.shape[0], -1, cond_latents.shape[-1])

        # 3. sample noise that we"ll add to the latents
        noise = torch.randn_like(latents).to(latents) # [batch_size, n_token, latent_dim]
        bs = latents.shape[0]
            
        # 4. Sample a random timestep for each motion
        timesteps = torch.randint(
            0,
            self.cfg.noise_scheduler.num_train_timesteps,
            (bs,),
            device=latents.device,
        )
        timesteps = timesteps.long()

        # 5. add noise
        noisy_z = self.noise_scheduler.add_noise(latents, noise, timesteps)

        # 6. diffusion model forward
        noise_pred = self.denoiser_model(noisy_z, timesteps, cond_latents)

        # 7. compute loss
        if self.noise_scheduler.config.prediction_type == "epsilon":
            target = noise 
        elif self.noise_scheduler.config.prediction_type == "v_prediction":
            target = self.noise_scheduler.get_velocity(latents, noise, timesteps)
        else:
            raise ValueError(f"Prediction Type: {self.noise_scheduler.prediction_type} not supported.")
        if self.cfg.snr_gamma == 0:
            if self.cfg.loss.loss_type == "l1":
                loss = F.l1_loss(noise_pred, target, reduction="mean")
            elif self.cfg.loss.loss_type in ["mse", "l2"]:
                loss = F.mse_loss(noise_pred, target, reduction="mean")
            else:
                raise ValueError(f"Loss Type: {self.cfg.loss.loss_type} not supported.")
        else:
            # Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
            # Since we predict the noise instead of x_0, the original formulation is slightly changed.
            # This is discussed in Section 4.2 of the same paper.
            snr = compute_snr(self.noise_scheduler, timesteps)
            mse_loss_weights = torch.stack([snr, self.cfg.snr_gamma * torch.ones_like(timesteps)], dim=1).min(
                dim=1
            )[0]
            if self.noise_scheduler.config.prediction_type == "epsilon":
                mse_loss_weights = mse_loss_weights / snr
            elif self.noise_scheduler.config.prediction_type == "v_prediction":
                mse_loss_weights = mse_loss_weights / (snr + 1)
            
            if self.cfg.loss.loss_type == "l1":
                loss = F.l1_loss(noise_pred, target, reduction="none")
            elif self.cfg.loss.loss_type in ["mse", "l2"]:
                loss = F.mse_loss(noise_pred, target, reduction="none")
            else:
                raise ValueError(f"Loss Type: {self.cfg.loss.loss_type} not supported.")
            loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
            loss = loss.mean()


        return {
            "loss_diffusion": loss,
            "latents": latents,
            "x_t": x_t,
            "noise": noise,
            "noise_pred": pred_noise,
            "timesteps": timesteps,
            }

    def training_step(self, batch, batch_idx):
        out = self(batch)

        loss = 0.
        for name, value in out.items():
            if name.startswith("loss_"):
                self.log(f"train/{name}", value)
                loss += value * self.C(self.cfg.loss[name.replace("loss_", "lambda_")])

        for name, value in self.cfg.loss.items():
            if name.startswith("lambda_"):
                self.log(f"train_params/{name}", self.C(value))

        return {"loss": loss}

    @torch.no_grad()
    def validation_step(self, batch, batch_idx):
        self.eval()
        
        if get_rank() == 0:
            sample_inputs = json.loads(open(self.cfg.val_samples_json).read()) # condition
            sample_inputs_ = copy.deepcopy(sample_inputs)
            sample_outputs = self.sample(sample_inputs) # list
            for i, sample_output in enumerate(sample_outputs):
                mesh_v_f, has_surface = self.shape_model.extract_geometry(sample_output, octree_depth=7, extract_mesh_func=self.cfg.extract_mesh_func)
                
                for j in range(len(mesh_v_f)):
                    if "image" in sample_inputs_:
                        name = sample_inputs_["image"][j].split("/")[-1].replace(".png", "")
                    elif "mvimages" in sample_inputs_:
                        name = sample_inputs_["mvimages"][j][0].split("/")[-2].replace(".png", "")
                    self.save_mesh(
                        f"it{self.true_global_step}/{name}_{i}.obj",
                        mesh_v_f[j][0], mesh_v_f[j][1]
                    )

        out = self(batch)
        if self.global_step == 0:
            latents = self.shape_model.decode(out["latents"])
            mesh_v_f, has_surface = self.shape_model.extract_geometry(latents=latents, extract_mesh_func=self.cfg.extract_mesh_func)

            self.save_mesh(
                f"it{self.true_global_step}/{batch['uid'][0]}_{batch['sel_idx'][0] if 'sel_idx' in batch.keys() else 0}.obj",
                mesh_v_f[0][0], mesh_v_f[0][1]
            )

        return {"val/loss": out["loss_diffusion"]}
 
    @torch.no_grad()
    def sample(self,
               sample_inputs: Dict[str, Union[torch.FloatTensor, List[str]]],
               sample_times: int = 1,
               steps: Optional[int] = None,
               guidance_scale: Optional[float] = None,
               eta: float = 0.0,
               seed: Optional[int] = None,
               **kwargs):

        if steps is None:
            steps = self.cfg.num_inference_steps
        if guidance_scale is None:
            guidance_scale = self.cfg.guidance_scale
        do_classifier_free_guidance = guidance_scale != 1.0

        # conditional encode
        if "image" in sample_inputs:
            sample_inputs["image"] = [Image.open(img) if type(img) == str else img for img in sample_inputs["image"]]
            cond = self.condition.encode_image(sample_inputs["image"])
            if do_classifier_free_guidance:
                un_cond = self.condition.empty_image_embeds.repeat(len(sample_inputs["image"]), 1, 1).to(cond)
                cond = torch.cat([un_cond, cond], dim=0)
        elif "mvimages" in sample_inputs: # by default 4 views
            bs = len(sample_inputs["mvimages"])
            cond = []
            for image in sample_inputs["mvimages"]:
                if isinstance(image, list) and isinstance(image[0], str):
                    sample_inputs["image"] = [Image.open(img) for img in image] # List[PIL]
                else:
                    sample_inputs["image"] = image
                cond += [self.condition.encode_image(sample_inputs["image"])]
            cond = torch.stack(cond, dim=0).view(bs, -1, self.cfg.denoiser_model.context_dim)
            if do_classifier_free_guidance:
                un_cond = self.condition.empty_image_embeds.unsqueeze(0).repeat(len(sample_inputs["mvimages"]), 1, 1, 1).view(bs, cond.shape[1], self.cfg.denoiser_model.context_dim).to(cond) # shape 为[len(sample_inputs["mvimages"], 4*(num_latents+1), context_dim]
                cond = torch.cat([un_cond, cond], dim=0).view(bs * 2, -1, cond[0].shape[-1]) 
        else:
            raise NotImplementedError("Only image or mvimages condition is supported.")

        outputs = []
        latents = None
        
        if seed != None:
            generator = torch.Generator(device="cuda").manual_seed(seed)
        else:
            generator = None

        for _ in range(sample_times):
            sample_loop = ddim_sample(
                self.denoise_scheduler,
                self.denoiser_model.eval(),
                shape=self.shape_model.latent_shape,
                cond=cond,
                steps=steps,
                guidance_scale=guidance_scale,
                do_classifier_free_guidance=do_classifier_free_guidance,
                device=self.device,
                eta=eta,
                disable_prog=False,
                generator= generator
            )
            for sample, t in sample_loop:
                latents = sample
            outputs.append(self.shape_model.decode(latents / self.cfg.z_scale_factor, **kwargs))
        
        return outputs

    def on_validation_epoch_end(self):
        pass