Spaces:
Runtime error
Runtime error
File size: 7,506 Bytes
d758270 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
from typing import List
from functools import partial
import numpy as np
import torch
import torch.nn as nn
from .modules.diffusionmodules.util import (
make_beta_schedule,
extract_into_tensor,
enforce_zero_terminal_snr,
noise_like,
)
from .util import exists, default, instantiate_from_config
from .modules.distributions.distributions import DiagonalGaussianDistribution
class DiffusionWrapper(nn.Module):
def __init__(self, diffusion_model):
super().__init__()
self.diffusion_model = diffusion_model
def forward(self, *args, **kwargs):
return self.diffusion_model(*args, **kwargs)
class LatentDiffusionInterface(nn.Module):
"""a simple interface class for LDM inference"""
def __init__(
self,
unet_config,
clip_config,
vae_config,
parameterization="eps",
scale_factor=0.18215,
beta_schedule="linear",
timesteps=1000,
linear_start=0.00085,
linear_end=0.0120,
cosine_s=8e-3,
given_betas=None,
zero_snr=False,
*args,
**kwargs,
):
super().__init__()
unet = instantiate_from_config(unet_config)
self.model = DiffusionWrapper(unet)
self.clip_model = instantiate_from_config(clip_config)
self.vae_model = instantiate_from_config(vae_config)
self.parameterization = parameterization
self.scale_factor = scale_factor
self.register_schedule(
given_betas=given_betas,
beta_schedule=beta_schedule,
timesteps=timesteps,
linear_start=linear_start,
linear_end=linear_end,
cosine_s=cosine_s,
zero_snr=zero_snr
)
def register_schedule(
self,
given_betas=None,
beta_schedule="linear",
timesteps=1000,
linear_start=1e-4,
linear_end=2e-2,
cosine_s=8e-3,
zero_snr=False
):
if exists(given_betas):
betas = given_betas
else:
betas = make_beta_schedule(
beta_schedule,
timesteps,
linear_start=linear_start,
linear_end=linear_end,
cosine_s=cosine_s,
)
if zero_snr:
print("--- using zero snr---")
betas = enforce_zero_terminal_snr(betas).numpy()
alphas = 1.0 - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1])
(timesteps,) = betas.shape
self.num_timesteps = int(timesteps)
self.linear_start = linear_start
self.linear_end = linear_end
assert (
alphas_cumprod.shape[0] == self.num_timesteps
), "alphas have to be defined for each timestep"
to_torch = partial(torch.tensor, dtype=torch.float32)
self.register_buffer("betas", to_torch(betas))
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
self.register_buffer("alphas_cumprod_prev", to_torch(alphas_cumprod_prev))
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer("sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod)))
self.register_buffer(
"sqrt_one_minus_alphas_cumprod", to_torch(np.sqrt(1.0 - alphas_cumprod))
)
self.register_buffer(
"log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod))
)
eps = 1e-8 # adding small epsilon value to avoid devide by zero error
self.register_buffer(
"sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / (alphas_cumprod + eps)))
)
self.register_buffer(
"sqrt_recipm1_alphas_cumprod", to_torch(np.sqrt(1.0 / (alphas_cumprod + eps) - 1))
)
# calculations for posterior q(x_{t-1} | x_t, x_0)
self.v_posterior = 0
posterior_variance = (1 - self.v_posterior) * betas * (
1.0 - alphas_cumprod_prev
) / (1.0 - alphas_cumprod) + self.v_posterior * betas
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
self.register_buffer("posterior_variance", to_torch(posterior_variance))
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
self.register_buffer(
"posterior_log_variance_clipped",
to_torch(np.log(np.maximum(posterior_variance, 1e-20))),
)
self.register_buffer(
"posterior_mean_coef1",
to_torch(betas * np.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod)),
)
self.register_buffer(
"posterior_mean_coef2",
to_torch(
(1.0 - alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - alphas_cumprod)
),
)
def q_sample(self, x_start, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
return (
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
* noise
)
def get_v(self, x, noise, t):
return (
extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
)
def predict_start_from_noise(self, x_t, t, noise):
return (
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
- extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
* noise
)
def predict_start_from_z_and_v(self, x_t, t, v):
return (
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
)
def predict_eps_from_z_and_v(self, x_t, t, v):
return (
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * v
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape)
* x_t
)
def apply_model(self, x_noisy, t, cond, **kwargs):
assert isinstance(cond, dict), "cond has to be a dictionary"
return self.model(x_noisy, t, **cond, **kwargs)
def get_learned_conditioning(self, prompts: List[str]):
return self.clip_model(prompts)
def get_learned_image_conditioning(self, images):
return self.clip_model.forward_image(images)
def get_first_stage_encoding(self, encoder_posterior):
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
z = encoder_posterior.sample()
elif isinstance(encoder_posterior, torch.Tensor):
z = encoder_posterior
else:
raise NotImplementedError(
f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented"
)
return self.scale_factor * z
def encode_first_stage(self, x):
return self.vae_model.encode(x)
def decode_first_stage(self, z):
z = 1.0 / self.scale_factor * z
return self.vae_model.decode(z)
|