File size: 7,879 Bytes
6b1e9f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import os
import sys
import pickle
import numpy as np
import torch
import torch.nn as nn
DEFAULT_DTYPE = torch.float32
def create_prior(prior_type, **kwargs):
if prior_type == 'gmm':
prior = MaxMixturePrior(**kwargs)
elif prior_type == 'l2':
return L2Prior(**kwargs)
elif prior_type == 'angle':
return SMPLifyAnglePrior(**kwargs)
elif prior_type == 'none' or prior_type is None:
# Don't use any pose prior
def no_prior(*args, **kwargs):
return 0.0
prior = no_prior
else:
raise ValueError('Prior {}'.format(prior_type) + ' is not implemented')
return prior
class SMPLifyAnglePrior(nn.Module):
def __init__(self, dtype=DEFAULT_DTYPE, **kwargs):
super(SMPLifyAnglePrior, self).__init__()
# Indices for the rotation angle of
# 55: left elbow, 90deg bend at -np.pi/2
# 58: right elbow, 90deg bend at np.pi/2
# 12: left knee, 90deg bend at np.pi/2
# 15: right knee, 90deg bend at np.pi/2
angle_prior_idxs = np.array([55, 58, 12, 15], dtype=np.int64)
angle_prior_idxs = torch.tensor(angle_prior_idxs, dtype=torch.long)
self.register_buffer('angle_prior_idxs', angle_prior_idxs)
angle_prior_signs = np.array([1, -1, -1, -1],
dtype=np.float32 if dtype == torch.float32
else np.float64)
angle_prior_signs = torch.tensor(angle_prior_signs,
dtype=dtype)
self.register_buffer('angle_prior_signs', angle_prior_signs)
def forward(self, pose, with_global_pose=False):
''' Returns the angle prior loss for the given pose
Args:
pose: (Bx[23 + 1] * 3) torch tensor with the axis-angle
representation of the rotations of the joints of the SMPL model.
Kwargs:
with_global_pose: Whether the pose vector also contains the global
orientation of the SMPL model. If not then the indices must be
corrected.
Returns:
A sze (B) tensor containing the angle prior loss for each element
in the batch.
'''
angle_prior_idxs = self.angle_prior_idxs - (not with_global_pose) * 3
return torch.exp(pose[:, angle_prior_idxs] *
self.angle_prior_signs).pow(2)
class L2Prior(nn.Module):
def __init__(self, dtype=DEFAULT_DTYPE, reduction='sum', **kwargs):
super(L2Prior, self).__init__()
def forward(self, module_input, *args):
return torch.sum(module_input.pow(2))
class MaxMixturePrior(nn.Module):
def __init__(self, prior_folder='prior',
num_gaussians=6, dtype=DEFAULT_DTYPE, epsilon=1e-16,
use_merged=True,
**kwargs):
super(MaxMixturePrior, self).__init__()
if dtype == DEFAULT_DTYPE:
np_dtype = np.float32
elif dtype == torch.float64:
np_dtype = np.float64
else:
print('Unknown float type {}, exiting!'.format(dtype))
sys.exit(-1)
self.num_gaussians = num_gaussians
self.epsilon = epsilon
self.use_merged = use_merged
gmm_fn = 'gmm_{:02d}.pkl'.format(num_gaussians)
full_gmm_fn = os.path.join(prior_folder, gmm_fn)
if not os.path.exists(full_gmm_fn):
print('The path to the mixture prior "{}"'.format(full_gmm_fn) +
' does not exist, exiting!')
sys.exit(-1)
with open(full_gmm_fn, 'rb') as f:
gmm = pickle.load(f, encoding='latin1')
if type(gmm) == dict:
means = gmm['means'].astype(np_dtype)
covs = gmm['covars'].astype(np_dtype)
weights = gmm['weights'].astype(np_dtype)
elif 'sklearn.mixture.gmm.GMM' in str(type(gmm)):
means = gmm.means_.astype(np_dtype)
covs = gmm.covars_.astype(np_dtype)
weights = gmm.weights_.astype(np_dtype)
else:
print('Unknown type for the prior: {}, exiting!'.format(type(gmm)))
sys.exit(-1)
self.register_buffer('means', torch.tensor(means, dtype=dtype))
self.register_buffer('covs', torch.tensor(covs, dtype=dtype))
precisions = [np.linalg.inv(cov) for cov in covs]
precisions = np.stack(precisions).astype(np_dtype)
self.register_buffer('precisions',
torch.tensor(precisions, dtype=dtype))
# The constant term:
sqrdets = np.array([(np.sqrt(np.linalg.det(c)))
for c in gmm['covars']])
const = (2 * np.pi)**(69 / 2.)
nll_weights = np.asarray(gmm['weights'] / (const *
(sqrdets / sqrdets.min())))
nll_weights = torch.tensor(nll_weights, dtype=dtype).unsqueeze(dim=0)
self.register_buffer('nll_weights', nll_weights)
weights = torch.tensor(gmm['weights'], dtype=dtype).unsqueeze(dim=0)
self.register_buffer('weights', weights)
self.register_buffer('pi_term',
torch.log(torch.tensor(2 * np.pi, dtype=dtype)))
cov_dets = [np.log(np.linalg.det(cov.astype(np_dtype)) + epsilon)
for cov in covs]
self.register_buffer('cov_dets',
torch.tensor(cov_dets, dtype=dtype))
# The dimensionality of the random variable
self.random_var_dim = self.means.shape[1]
def get_mean(self):
''' Returns the mean of the mixture '''
mean_pose = torch.matmul(self.weights, self.means)
return mean_pose
def merged_log_likelihood(self, pose, betas):
diff_from_mean = pose.unsqueeze(dim=1) - self.means
prec_diff_prod = torch.einsum('mij,bmj->bmi',
[self.precisions, diff_from_mean])
diff_prec_quadratic = (prec_diff_prod * diff_from_mean).sum(dim=-1)
curr_loglikelihood = 0.5 * diff_prec_quadratic - \
torch.log(self.nll_weights)
# curr_loglikelihood = 0.5 * (self.cov_dets.unsqueeze(dim=0) +
# self.random_var_dim * self.pi_term +
# diff_prec_quadratic
# ) - torch.log(self.weights)
min_likelihood, _ = torch.min(curr_loglikelihood, dim=1)
return min_likelihood
def log_likelihood(self, pose, betas, *args, **kwargs):
''' Create graph operation for negative log-likelihood calculation
'''
likelihoods = []
for idx in range(self.num_gaussians):
mean = self.means[idx]
prec = self.precisions[idx]
cov = self.covs[idx]
diff_from_mean = pose - mean
curr_loglikelihood = torch.einsum('bj,ji->bi',
[diff_from_mean, prec])
curr_loglikelihood = torch.einsum('bi,bi->b',
[curr_loglikelihood,
diff_from_mean])
cov_term = torch.log(torch.det(cov) + self.epsilon)
curr_loglikelihood += 0.5 * (cov_term +
self.random_var_dim *
self.pi_term)
likelihoods.append(curr_loglikelihood)
log_likelihoods = torch.stack(likelihoods, dim=1)
min_idx = torch.argmin(log_likelihoods, dim=1)
weight_component = self.nll_weights[:, min_idx]
weight_component = -torch.log(weight_component)
return weight_component + log_likelihoods[:, min_idx]
def forward(self, pose, betas):
if self.use_merged:
return self.merged_log_likelihood(pose, betas)
else:
return self.log_likelihood(pose, betas)
|