File size: 5,393 Bytes
d26c057
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import os
import sys

import nest_asyncio
import Stemmer
from llama_index.core import (
  PromptTemplate,
  Settings,
  SimpleDirectoryReader,
  StorageContext,
  VectorStoreIndex,
  load_index_from_storage,
)
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.query_engine import CitationQueryEngine
from llama_index.core.retrievers import QueryFusionRetriever
from llama_index.core.schema import NodeWithScore as NodeWithScore
from llama_index.embeddings.google import GeminiEmbedding
from llama_index.llms.gemini import Gemini
from llama_index.retrievers.bm25 import BM25Retriever

import mesop as me

nest_asyncio.apply()

CITATION_QA_TEMPLATE = PromptTemplate(
  "Please provide an answer based solely on the provided sources. "
  "When referencing information from a source, "
  "cite the appropriate source(s) using their corresponding numbers. "
  "Every answer should include at least one source citation. "
  "Only cite a source when you are explicitly referencing it. "
  "If you are sure NONE of the sources are helpful, then say: 'Sorry, I didn't find any docs about this.'"
  "If you are not sure if any of the sources are helpful, then say: 'You might find this helpful', where 'this' is the source's title.'"
  "DO NOT say Source 1, Source 2, etc. Only reference sources like this: [1], [2], etc."
  "I want you to pick just ONE source to answer the question."
  "For example:\n"
  "Source 1:\n"
  "The sky is red in the evening and blue in the morning.\n"
  "Source 2:\n"
  "Water is wet when the sky is red.\n"
  "Query: When is water wet?\n"
  "Answer: Water will be wet when the sky is red [2], "
  "which occurs in the evening [1].\n"
  "Now it's your turn. Below are several numbered sources of information:"
  "\n------\n"
  "{context_str}"
  "\n------\n"
  "Query: {query_str}\n"
  "Answer: "
)

os.environ["GOOGLE_API_KEY"] = os.environ["GEMINI_API_KEY"]


def get_meta(file_path: str) -> dict[str, str]:
  with open(file_path) as f:
    title = f.readline().strip()
    if title.startswith("# "):
      title = title[2:]
    else:
      title = (
        file_path.split("/")[-1]
        .replace(".md", "")
        .replace("-", " ")
        .capitalize()
      )

  file_path = file_path.replace(".md", "")
  CONST = "../../docs/"
  docs_index = file_path.index(CONST)
  docs_path = file_path[docs_index + len(CONST) :]

  url = "https://mesop-dev.github.io/mesop/" + docs_path

  print(f"URL: {url}")
  return {
    "url": url,
    "title": title,
  }


embed_model = GeminiEmbedding(
  model_name="models/text-embedding-004", api_key=os.environ["GOOGLE_API_KEY"]
)
Settings.embed_model = embed_model

PERSIST_DIR = "./gen"


def build_or_load_index():
  if not os.path.exists(PERSIST_DIR) or "--build-index" in sys.argv:
    print("Building index")

    documents = SimpleDirectoryReader(
      "../../docs/",
      required_exts=[
        ".md",
      ],
      exclude=[
        "showcase.md",
        "demo.md",
        "blog",
        "internal",
      ],
      file_metadata=get_meta,
      recursive=True,
    ).load_data()
    for doc in documents:
      doc.excluded_llm_metadata_keys = ["url"]
    splitter = SentenceSplitter(chunk_size=512)

    nodes = splitter.get_nodes_from_documents(documents)
    bm25_retriever = BM25Retriever.from_defaults(
      nodes=nodes,
      similarity_top_k=5,
      # Optional: We can pass in the stemmer and set the language for stopwords
      # This is important for removing stopwords and stemming the query + text
      # The default is english for both
      stemmer=Stemmer.Stemmer("english"),
      language="english",
    )
    bm25_retriever.persist(PERSIST_DIR + "/bm25_retriever")

    index = VectorStoreIndex.from_documents(documents, embed_model=embed_model)
    index.storage_context.persist(persist_dir=PERSIST_DIR)
    return index, bm25_retriever
  else:
    print("Loading index")
    bm25_retriever = BM25Retriever.from_persist_dir(
      PERSIST_DIR + "/bm25_retriever"
    )
    storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
    index = load_index_from_storage(storage_context)
    return index, bm25_retriever


if me.runtime().is_hot_reload_in_progress:
  print("Hot reload - skip building index!")
  query_engine = me._query_engine
  bm25_retriever = me._bm25_retriever

else:
  index, bm25_retriever = build_or_load_index()
  llm = Gemini(model="models/gemini-1.5-flash-latest")
  retriever = QueryFusionRetriever(
    [
      index.as_retriever(similarity_top_k=5),
      bm25_retriever,
    ],
    llm=llm,
    num_queries=1,
    use_async=True,
    similarity_top_k=5,
  )
  query_engine = CitationQueryEngine.from_args(
    index,
    retriever=retriever,
    llm=llm,
    citation_qa_template=CITATION_QA_TEMPLATE,
    similarity_top_k=5,
    embedding_model=embed_model,
    streaming=True,
  )

  blocking_query_engine = CitationQueryEngine.from_args(
    index,
    retriever=retriever,
    llm=llm,
    citation_qa_template=CITATION_QA_TEMPLATE,
    similarity_top_k=5,
    embedding_model=embed_model,
    streaming=False,
  )
  # TODO: replace with proper mechanism for persisting objects
  # across hot reloads
  me._query_engine = query_engine
  me._bm25_retriever = bm25_retriever


NEWLINE = "\n"


def ask(query: str):
  return query_engine.query(query)


def retrieve(query: str):
  return bm25_retriever.retrieve(query)