mcphub / docs /features /smart-routing.mdx
wuran's picture
Upload folder using huggingface_hub
eb846d0 verified
---
title: 'Smart Routing'
description: 'AI-powered tool discovery using vector semantic search'
---
## Overview
Smart Routing is MCPHub's intelligent tool discovery system that uses vector semantic search to automatically find the most relevant tools for any given task. Instead of manually specifying which tools to use, AI clients can describe what they want to accomplish, and Smart Routing will identify and provide access to the most appropriate tools.
## How Smart Routing Works
### 1. Tool Indexing
When servers start up, Smart Routing automatically:
- Discovers all available tools from MCP servers
- Extracts tool metadata (names, descriptions, parameters)
- Converts tool information to vector embeddings
- Stores embeddings in PostgreSQL with pgvector
### 2. Semantic Search
When a query is made:
- User queries are converted to vector embeddings
- Similarity search finds matching tools using cosine similarity
- Dynamic thresholds filter out irrelevant results
- Results are ranked by relevance score
### 3. Intelligent Filtering
Smart Routing applies several filters:
- **Relevance Threshold**: Only returns tools above similarity threshold
- **Context Awareness**: Considers conversation context
- **Tool Availability**: Ensures tools are currently accessible
- **Permission Filtering**: Respects user access permissions
### 4. Tool Execution
Found tools can be directly executed:
- Parameter validation ensures correct tool usage
- Error handling provides helpful feedback
- Response formatting maintains consistency
- Logging tracks tool usage for analytics
## Prerequisites
Smart Routing requires additional setup compared to basic MCPHub usage:
### Required Components
1. **PostgreSQL with pgvector**: Vector database for embeddings storage
2. **Embedding Service**: OpenAI API or compatible service
3. **Environment Configuration**: Proper configuration variables
### Quick Setup
<Tabs>
<Tab title="Docker Compose">
Use this `docker-compose.yml` for complete setup:
```yaml
version: '3.8'
services:
mcphub:
image: samanhappy/mcphub:latest
ports:
- "3000:3000"
environment:
- DATABASE_URL=postgresql://mcphub:password@postgres:5432/mcphub
- OPENAI_API_KEY=your_openai_api_key
- ENABLE_SMART_ROUTING=true
depends_on:
- postgres
volumes:
- ./mcp_settings.json:/app/mcp_settings.json
postgres:
image: pgvector/pgvector:pg16
environment:
- POSTGRES_DB=mcphub
- POSTGRES_USER=mcphub
- POSTGRES_PASSWORD=password
volumes:
- postgres_data:/var/lib/postgresql/data
ports:
- "5432:5432"
volumes:
postgres_data:
```
Start with:
```bash
docker-compose up -d
```
</Tab>
<Tab title="Manual Setup">
1. **Install PostgreSQL with pgvector**:
```bash
# Using Docker
docker run -d \
--name mcphub-postgres \
-e POSTGRES_DB=mcphub \
-e POSTGRES_USER=mcphub \
-e POSTGRES_PASSWORD=your_password \
-p 5432:5432 \
pgvector/pgvector:pg16
```
2. **Set Environment Variables**:
```bash
export DATABASE_URL="postgresql://mcphub:your_password@localhost:5432/mcphub"
export OPENAI_API_KEY="your_openai_api_key"
export ENABLE_SMART_ROUTING="true"
```
3. **Start MCPHub**:
```bash
mcphub
```
</Tab>
<Tab title="Kubernetes">
Deploy with these Kubernetes manifests:
```yaml
# postgres-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: postgres
spec:
selector:
matchLabels:
app: postgres
template:
metadata:
labels:
app: postgres
spec:
containers:
- name: postgres
image: pgvector/pgvector:pg16
env:
- name: POSTGRES_DB
value: mcphub
- name: POSTGRES_USER
value: mcphub
- name: POSTGRES_PASSWORD
valueFrom:
secretKeyRef:
name: postgres-secret
key: password
ports:
- containerPort: 5432
---
# mcphub-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: mcphub
spec:
selector:
matchLabels:
app: mcphub
template:
metadata:
labels:
app: mcphub
spec:
containers:
- name: mcphub
image: samanhappy/mcphub:latest
env:
- name: DATABASE_URL
value: "postgresql://mcphub:password@postgres:5432/mcphub"
- name: OPENAI_API_KEY
valueFrom:
secretKeyRef:
name: openai-secret
key: api-key
- name: ENABLE_SMART_ROUTING
value: "true"
ports:
- containerPort: 3000
```
</Tab>
</Tabs>
## Configuration
### Environment Variables
Configure Smart Routing with these environment variables:
```bash
# Required
DATABASE_URL=postgresql://user:password@host:5432/database
OPENAI_API_KEY=your_openai_api_key
# Optional
ENABLE_SMART_ROUTING=true
EMBEDDING_MODEL=text-embedding-3-small
SIMILARITY_THRESHOLD=0.7
MAX_TOOLS_RETURNED=10
EMBEDDING_BATCH_SIZE=100
```
### Configuration Options
<AccordionGroup>
<Accordion title="Database Configuration">
```bash
# Full PostgreSQL connection string
DATABASE_URL=postgresql://username:password@host:port/database?schema=public
# SSL configuration for cloud databases
DATABASE_URL=postgresql://user:pass@host:5432/db?sslmode=require
# Connection pool settings
DATABASE_POOL_SIZE=20
DATABASE_TIMEOUT=30000
```
</Accordion>
<Accordion title="Embedding Service">
```bash
# OpenAI (default)
OPENAI_API_KEY=sk-your-api-key
EMBEDDING_MODEL=text-embedding-3-small
# Azure OpenAI
AZURE_OPENAI_ENDPOINT=https://your-resource.openai.azure.com
AZURE_OPENAI_API_KEY=your-api-key
AZURE_OPENAI_DEPLOYMENT=your-embedding-deployment
# Custom embedding service
EMBEDDING_SERVICE_URL=https://your-embedding-service.com
EMBEDDING_SERVICE_API_KEY=your-api-key
```
</Accordion>
<Accordion title="Search Parameters">
```bash
# Similarity threshold (0.0 to 1.0)
SIMILARITY_THRESHOLD=0.7
# Maximum tools to return
MAX_TOOLS_RETURNED=10
# Minimum query length for smart routing
MIN_QUERY_LENGTH=5
# Cache TTL for embeddings (seconds)
EMBEDDING_CACHE_TTL=3600
```
</Accordion>
</AccordionGroup>
## Using Smart Routing
### Smart Routing Endpoint
Access Smart Routing through the special `$smart` endpoint:
<Tabs>
<Tab title="HTTP MCP">
```
http://localhost:3000/mcp/$smart
```
</Tab>
<Tab title="SSE (Legacy)">
```
http://localhost:3000/sse/$smart
```
</Tab>
</Tabs>
### Basic Usage
Connect your AI client to the Smart Routing endpoint and make natural language requests:
```bash
# Example: Find tools for web scraping
curl -X POST http://localhost:3000/mcp/$smart \
-H "Content-Type: application/json" \
-d '{
"jsonrpc": "2.0",
"id": 1,
"method": "tools/search",
"params": {
"query": "scrape website content and extract text"
}
}'
```
Response:
```json
{
"jsonrpc": "2.0",
"id": 1,
"result": {
"tools": [
{
"name": "fetch_html",
"server": "fetch",
"description": "Fetch and parse HTML content from a URL",
"relevanceScore": 0.92,
"parameters": { ... }
},
{
"name": "playwright_navigate",
"server": "playwright",
"description": "Navigate to a web page and extract content",
"relevanceScore": 0.87,
"parameters": { ... }
}
]
}
}
```
### Advanced Queries
Smart Routing supports various query types:
<AccordionGroup>
<Accordion title="Task-Based Queries">
```bash
# What you want to accomplish
curl -X POST http://localhost:3000/mcp/$smart \
-H "Content-Type: application/json" \
-d '{
"jsonrpc": "2.0",
"id": 1,
"method": "tools/search",
"params": {
"query": "send a message to a slack channel"
}
}'
```
</Accordion>
<Accordion title="Domain-Specific Queries">
```bash
# Specific domain or technology
curl -X POST http://localhost:3000/mcp/$smart \
-H "Content-Type: application/json" \
-d '{
"jsonrpc": "2.0",
"id": 1,
"method": "tools/search",
"params": {
"query": "database operations SQL queries"
}
}'
```
</Accordion>
<Accordion title="Action-Oriented Queries">
```bash
# Specific actions
curl -X POST http://localhost:3000/mcp/$smart \
-H "Content-Type: application/json" \
-d '{
"jsonrpc": "2.0",
"id": 1,
"method": "tools/search",
"params": {
"query": "create file upload to github repository"
}
}'
```
</Accordion>
<Accordion title="Context-Aware Queries">
```bash
# Include context for better results
curl -X POST http://localhost:3000/mcp/$smart \
-H "Content-Type: application/json" \
-d '{
"jsonrpc": "2.0",
"id": 1,
"method": "tools/search",
"params": {
"query": "automated testing web application",
"context": {
"project": "e-commerce website",
"technologies": ["React", "Node.js"],
"environment": "staging"
}
}
}'
```
</Accordion>
</AccordionGroup>
### Tool Execution
Once Smart Routing finds relevant tools, you can execute them directly:
```bash
# Execute a found tool
curl -X POST http://localhost:3000/mcp/$smart \
-H "Content-Type: application/json" \
-d '{
"jsonrpc": "2.0",
"id": 2,
"method": "tools/call",
"params": {
"name": "fetch_html",
"arguments": {
"url": "https://example.com"
}
}
}'
```
## Performance Optimization
### Embedding Cache
Smart Routing caches embeddings to improve performance:
```bash
# Configure cache settings
EMBEDDING_CACHE_TTL=3600 # Cache for 1 hour
EMBEDDING_CACHE_SIZE=10000 # Cache up to 10k embeddings
EMBEDDING_CACHE_CLEANUP=300 # Cleanup every 5 minutes
```
### Batch Processing
Tools are indexed in batches for efficiency:
```bash
# Batch size for embedding generation
EMBEDDING_BATCH_SIZE=100
# Concurrent embedding requests
EMBEDDING_CONCURRENCY=5
# Index update frequency
INDEX_UPDATE_INTERVAL=3600 # Re-index every hour
```
### Database Optimization
Optimize PostgreSQL for vector operations:
```sql
-- Create indexes for better performance
CREATE INDEX ON tool_embeddings USING hnsw (embedding vector_cosine_ops);
-- Adjust PostgreSQL settings
ALTER SYSTEM SET shared_preload_libraries = 'vector';
ALTER SYSTEM SET max_connections = 200;
ALTER SYSTEM SET shared_buffers = '256MB';
ALTER SYSTEM SET effective_cache_size = '1GB';
```
## Monitoring and Analytics
### Smart Routing Metrics
Monitor Smart Routing performance:
```bash
# Get Smart Routing statistics
curl http://localhost:3000/api/smart-routing/stats \
-H "Authorization: Bearer YOUR_JWT_TOKEN"
```
Response includes:
- Query count and frequency
- Average response time
- Embedding cache hit rate
- Most popular tools
- Query patterns
### Tool Usage Analytics
Track which tools are found and used:
```bash
# Get tool usage analytics
curl http://localhost:3000/api/smart-routing/analytics \
-H "Authorization: Bearer YOUR_JWT_TOKEN"
```
Metrics include:
- Tool discovery rates
- Execution success rates
- User satisfaction scores
- Query-to-execution conversion
### Performance Monitoring
Monitor system performance:
```bash
# Database performance
curl http://localhost:3000/api/smart-routing/db-stats \
-H "Authorization: Bearer YOUR_JWT_TOKEN"
# Embedding service status
curl http://localhost:3000/api/smart-routing/embedding-stats \
-H "Authorization: Bearer YOUR_JWT_TOKEN"
```
## Advanced Features
### Custom Embeddings
Use custom embedding models:
```bash
# Hugging Face models
EMBEDDING_SERVICE=huggingface
HUGGINGFACE_MODEL=sentence-transformers/all-MiniLM-L6-v2
HUGGINGFACE_API_KEY=your_api_key
# Local embedding service
EMBEDDING_SERVICE=local
EMBEDDING_SERVICE_URL=http://localhost:8080/embeddings
```
### Query Enhancement
Enhance queries for better results:
```json
{
"queryEnhancement": {
"enabled": true,
"expandAcronyms": true,
"addSynonyms": true,
"contextualExpansion": true
}
}
```
### Result Filtering
Filter results based on criteria:
```json
{
"resultFiltering": {
"minRelevanceScore": 0.7,
"maxResults": 10,
"preferredServers": ["fetch", "playwright"],
"excludeServers": ["deprecated-server"]
}
}
```
### Feedback Learning
Improve results based on user feedback:
```bash
# Provide feedback on search results
curl -X POST http://localhost:3000/api/smart-routing/feedback \
-H "Content-Type: application/json" \
-H "Authorization: Bearer YOUR_JWT_TOKEN" \
-d '{
"queryId": "search-123",
"toolName": "fetch_html",
"rating": 5,
"successful": true,
"comments": "Perfect tool for the task"
}'
```
## Troubleshooting
<AccordionGroup>
<Accordion title="Database Connection Issues">
**Symptoms:**
- Smart Routing not available
- Database connection errors
- Embedding storage failures
**Solutions:**
1. Verify PostgreSQL is running
2. Check DATABASE_URL format
3. Ensure pgvector extension is installed
4. Test connection manually:
```bash
psql $DATABASE_URL -c "SELECT 1;"
```
</Accordion>
<Accordion title="Embedding Service Problems">
**Symptoms:**
- Tool indexing failures
- Query processing errors
- API rate limit errors
**Solutions:**
1. Verify API key validity
2. Check network connectivity
3. Monitor rate limits
4. Test embedding service:
```bash
curl -X POST https://api.openai.com/v1/embeddings \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-d '{"input": "test", "model": "text-embedding-3-small"}'
```
</Accordion>
<Accordion title="Poor Search Results">
**Symptoms:**
- Irrelevant tools returned
- Low relevance scores
- Missing expected tools
**Solutions:**
1. Adjust similarity threshold
2. Re-index tools with better descriptions
3. Use more specific queries
4. Check tool metadata quality
```bash
# Re-index all tools
curl -X POST http://localhost:3000/api/smart-routing/reindex \
-H "Authorization: Bearer YOUR_JWT_TOKEN"
```
</Accordion>
<Accordion title="Performance Issues">
**Symptoms:**
- Slow query responses
- High database load
- Memory usage spikes
**Solutions:**
1. Optimize database configuration
2. Increase cache sizes
3. Reduce batch sizes
4. Monitor system resources
```bash
# Check system performance
curl http://localhost:3000/api/smart-routing/performance \
-H "Authorization: Bearer YOUR_JWT_TOKEN"
```
</Accordion>
</AccordionGroup>
## Best Practices
### Query Writing
<Tip>
**Be Descriptive**: Use specific, descriptive language in queries for better tool matching.
</Tip>
<Tip>
**Include Context**: Provide relevant context about your task or domain for more accurate results.
</Tip>
<Tip>**Use Natural Language**: Write queries as you would describe the task to a human.</Tip>
### Tool Descriptions
<Warning>
**Quality Metadata**: Ensure MCP servers provide high-quality tool descriptions and metadata.
</Warning>
<Warning>**Regular Updates**: Keep tool descriptions current as functionality evolves.</Warning>
<Warning>
**Consistent Naming**: Use consistent naming conventions across tools and servers.
</Warning>
### System Maintenance
<Info>**Regular Re-indexing**: Periodically re-index tools to ensure embedding quality.</Info>
<Info>**Monitor Performance**: Track query patterns and optimize based on usage.</Info>
<Info>
**Update Models**: Consider updating to newer embedding models as they become available.
</Info>
## Next Steps
<CardGroup cols={2}>
<Card title="Authentication" icon="shield" href="/features/authentication">
User management and access control
</Card>
<Card title="Monitoring" icon="chart-line" href="/features/monitoring">
System monitoring and analytics
</Card>
<Card title="API Reference" icon="code" href="/api-reference/smart-routing">
Complete Smart Routing API documentation
</Card>
<Card title="Configuration" icon="cog" href="/configuration/environment-variables">
Advanced configuration options
</Card>
</CardGroup>