File size: 17,025 Bytes
eb846d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 |
---
title: 'Smart Routing'
description: 'AI-powered tool discovery using vector semantic search'
---
## Overview
Smart Routing is MCPHub's intelligent tool discovery system that uses vector semantic search to automatically find the most relevant tools for any given task. Instead of manually specifying which tools to use, AI clients can describe what they want to accomplish, and Smart Routing will identify and provide access to the most appropriate tools.
## How Smart Routing Works
### 1. Tool Indexing
When servers start up, Smart Routing automatically:
- Discovers all available tools from MCP servers
- Extracts tool metadata (names, descriptions, parameters)
- Converts tool information to vector embeddings
- Stores embeddings in PostgreSQL with pgvector
### 2. Semantic Search
When a query is made:
- User queries are converted to vector embeddings
- Similarity search finds matching tools using cosine similarity
- Dynamic thresholds filter out irrelevant results
- Results are ranked by relevance score
### 3. Intelligent Filtering
Smart Routing applies several filters:
- **Relevance Threshold**: Only returns tools above similarity threshold
- **Context Awareness**: Considers conversation context
- **Tool Availability**: Ensures tools are currently accessible
- **Permission Filtering**: Respects user access permissions
### 4. Tool Execution
Found tools can be directly executed:
- Parameter validation ensures correct tool usage
- Error handling provides helpful feedback
- Response formatting maintains consistency
- Logging tracks tool usage for analytics
## Prerequisites
Smart Routing requires additional setup compared to basic MCPHub usage:
### Required Components
1. **PostgreSQL with pgvector**: Vector database for embeddings storage
2. **Embedding Service**: OpenAI API or compatible service
3. **Environment Configuration**: Proper configuration variables
### Quick Setup
<Tabs>
<Tab title="Docker Compose">
Use this `docker-compose.yml` for complete setup:
```yaml
version: '3.8'
services:
mcphub:
image: samanhappy/mcphub:latest
ports:
- "3000:3000"
environment:
- DATABASE_URL=postgresql://mcphub:password@postgres:5432/mcphub
- OPENAI_API_KEY=your_openai_api_key
- ENABLE_SMART_ROUTING=true
depends_on:
- postgres
volumes:
- ./mcp_settings.json:/app/mcp_settings.json
postgres:
image: pgvector/pgvector:pg16
environment:
- POSTGRES_DB=mcphub
- POSTGRES_USER=mcphub
- POSTGRES_PASSWORD=password
volumes:
- postgres_data:/var/lib/postgresql/data
ports:
- "5432:5432"
volumes:
postgres_data:
```
Start with:
```bash
docker-compose up -d
```
</Tab>
<Tab title="Manual Setup">
1. **Install PostgreSQL with pgvector**:
```bash
# Using Docker
docker run -d \
--name mcphub-postgres \
-e POSTGRES_DB=mcphub \
-e POSTGRES_USER=mcphub \
-e POSTGRES_PASSWORD=your_password \
-p 5432:5432 \
pgvector/pgvector:pg16
```
2. **Set Environment Variables**:
```bash
export DATABASE_URL="postgresql://mcphub:your_password@localhost:5432/mcphub"
export OPENAI_API_KEY="your_openai_api_key"
export ENABLE_SMART_ROUTING="true"
```
3. **Start MCPHub**:
```bash
mcphub
```
</Tab>
<Tab title="Kubernetes">
Deploy with these Kubernetes manifests:
```yaml
# postgres-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: postgres
spec:
selector:
matchLabels:
app: postgres
template:
metadata:
labels:
app: postgres
spec:
containers:
- name: postgres
image: pgvector/pgvector:pg16
env:
- name: POSTGRES_DB
value: mcphub
- name: POSTGRES_USER
value: mcphub
- name: POSTGRES_PASSWORD
valueFrom:
secretKeyRef:
name: postgres-secret
key: password
ports:
- containerPort: 5432
---
# mcphub-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: mcphub
spec:
selector:
matchLabels:
app: mcphub
template:
metadata:
labels:
app: mcphub
spec:
containers:
- name: mcphub
image: samanhappy/mcphub:latest
env:
- name: DATABASE_URL
value: "postgresql://mcphub:password@postgres:5432/mcphub"
- name: OPENAI_API_KEY
valueFrom:
secretKeyRef:
name: openai-secret
key: api-key
- name: ENABLE_SMART_ROUTING
value: "true"
ports:
- containerPort: 3000
```
</Tab>
</Tabs>
## Configuration
### Environment Variables
Configure Smart Routing with these environment variables:
```bash
# Required
DATABASE_URL=postgresql://user:password@host:5432/database
OPENAI_API_KEY=your_openai_api_key
# Optional
ENABLE_SMART_ROUTING=true
EMBEDDING_MODEL=text-embedding-3-small
SIMILARITY_THRESHOLD=0.7
MAX_TOOLS_RETURNED=10
EMBEDDING_BATCH_SIZE=100
```
### Configuration Options
<AccordionGroup>
<Accordion title="Database Configuration">
```bash
# Full PostgreSQL connection string
DATABASE_URL=postgresql://username:password@host:port/database?schema=public
# SSL configuration for cloud databases
DATABASE_URL=postgresql://user:pass@host:5432/db?sslmode=require
# Connection pool settings
DATABASE_POOL_SIZE=20
DATABASE_TIMEOUT=30000
```
</Accordion>
<Accordion title="Embedding Service">
```bash
# OpenAI (default)
OPENAI_API_KEY=sk-your-api-key
EMBEDDING_MODEL=text-embedding-3-small
# Azure OpenAI
AZURE_OPENAI_ENDPOINT=https://your-resource.openai.azure.com
AZURE_OPENAI_API_KEY=your-api-key
AZURE_OPENAI_DEPLOYMENT=your-embedding-deployment
# Custom embedding service
EMBEDDING_SERVICE_URL=https://your-embedding-service.com
EMBEDDING_SERVICE_API_KEY=your-api-key
```
</Accordion>
<Accordion title="Search Parameters">
```bash
# Similarity threshold (0.0 to 1.0)
SIMILARITY_THRESHOLD=0.7
# Maximum tools to return
MAX_TOOLS_RETURNED=10
# Minimum query length for smart routing
MIN_QUERY_LENGTH=5
# Cache TTL for embeddings (seconds)
EMBEDDING_CACHE_TTL=3600
```
</Accordion>
</AccordionGroup>
## Using Smart Routing
### Smart Routing Endpoint
Access Smart Routing through the special `$smart` endpoint:
<Tabs>
<Tab title="HTTP MCP">
```
http://localhost:3000/mcp/$smart
```
</Tab>
<Tab title="SSE (Legacy)">
```
http://localhost:3000/sse/$smart
```
</Tab>
</Tabs>
### Basic Usage
Connect your AI client to the Smart Routing endpoint and make natural language requests:
```bash
# Example: Find tools for web scraping
curl -X POST http://localhost:3000/mcp/$smart \
-H "Content-Type: application/json" \
-d '{
"jsonrpc": "2.0",
"id": 1,
"method": "tools/search",
"params": {
"query": "scrape website content and extract text"
}
}'
```
Response:
```json
{
"jsonrpc": "2.0",
"id": 1,
"result": {
"tools": [
{
"name": "fetch_html",
"server": "fetch",
"description": "Fetch and parse HTML content from a URL",
"relevanceScore": 0.92,
"parameters": { ... }
},
{
"name": "playwright_navigate",
"server": "playwright",
"description": "Navigate to a web page and extract content",
"relevanceScore": 0.87,
"parameters": { ... }
}
]
}
}
```
### Advanced Queries
Smart Routing supports various query types:
<AccordionGroup>
<Accordion title="Task-Based Queries">
```bash
# What you want to accomplish
curl -X POST http://localhost:3000/mcp/$smart \
-H "Content-Type: application/json" \
-d '{
"jsonrpc": "2.0",
"id": 1,
"method": "tools/search",
"params": {
"query": "send a message to a slack channel"
}
}'
```
</Accordion>
<Accordion title="Domain-Specific Queries">
```bash
# Specific domain or technology
curl -X POST http://localhost:3000/mcp/$smart \
-H "Content-Type: application/json" \
-d '{
"jsonrpc": "2.0",
"id": 1,
"method": "tools/search",
"params": {
"query": "database operations SQL queries"
}
}'
```
</Accordion>
<Accordion title="Action-Oriented Queries">
```bash
# Specific actions
curl -X POST http://localhost:3000/mcp/$smart \
-H "Content-Type: application/json" \
-d '{
"jsonrpc": "2.0",
"id": 1,
"method": "tools/search",
"params": {
"query": "create file upload to github repository"
}
}'
```
</Accordion>
<Accordion title="Context-Aware Queries">
```bash
# Include context for better results
curl -X POST http://localhost:3000/mcp/$smart \
-H "Content-Type: application/json" \
-d '{
"jsonrpc": "2.0",
"id": 1,
"method": "tools/search",
"params": {
"query": "automated testing web application",
"context": {
"project": "e-commerce website",
"technologies": ["React", "Node.js"],
"environment": "staging"
}
}
}'
```
</Accordion>
</AccordionGroup>
### Tool Execution
Once Smart Routing finds relevant tools, you can execute them directly:
```bash
# Execute a found tool
curl -X POST http://localhost:3000/mcp/$smart \
-H "Content-Type: application/json" \
-d '{
"jsonrpc": "2.0",
"id": 2,
"method": "tools/call",
"params": {
"name": "fetch_html",
"arguments": {
"url": "https://example.com"
}
}
}'
```
## Performance Optimization
### Embedding Cache
Smart Routing caches embeddings to improve performance:
```bash
# Configure cache settings
EMBEDDING_CACHE_TTL=3600 # Cache for 1 hour
EMBEDDING_CACHE_SIZE=10000 # Cache up to 10k embeddings
EMBEDDING_CACHE_CLEANUP=300 # Cleanup every 5 minutes
```
### Batch Processing
Tools are indexed in batches for efficiency:
```bash
# Batch size for embedding generation
EMBEDDING_BATCH_SIZE=100
# Concurrent embedding requests
EMBEDDING_CONCURRENCY=5
# Index update frequency
INDEX_UPDATE_INTERVAL=3600 # Re-index every hour
```
### Database Optimization
Optimize PostgreSQL for vector operations:
```sql
-- Create indexes for better performance
CREATE INDEX ON tool_embeddings USING hnsw (embedding vector_cosine_ops);
-- Adjust PostgreSQL settings
ALTER SYSTEM SET shared_preload_libraries = 'vector';
ALTER SYSTEM SET max_connections = 200;
ALTER SYSTEM SET shared_buffers = '256MB';
ALTER SYSTEM SET effective_cache_size = '1GB';
```
## Monitoring and Analytics
### Smart Routing Metrics
Monitor Smart Routing performance:
```bash
# Get Smart Routing statistics
curl http://localhost:3000/api/smart-routing/stats \
-H "Authorization: Bearer YOUR_JWT_TOKEN"
```
Response includes:
- Query count and frequency
- Average response time
- Embedding cache hit rate
- Most popular tools
- Query patterns
### Tool Usage Analytics
Track which tools are found and used:
```bash
# Get tool usage analytics
curl http://localhost:3000/api/smart-routing/analytics \
-H "Authorization: Bearer YOUR_JWT_TOKEN"
```
Metrics include:
- Tool discovery rates
- Execution success rates
- User satisfaction scores
- Query-to-execution conversion
### Performance Monitoring
Monitor system performance:
```bash
# Database performance
curl http://localhost:3000/api/smart-routing/db-stats \
-H "Authorization: Bearer YOUR_JWT_TOKEN"
# Embedding service status
curl http://localhost:3000/api/smart-routing/embedding-stats \
-H "Authorization: Bearer YOUR_JWT_TOKEN"
```
## Advanced Features
### Custom Embeddings
Use custom embedding models:
```bash
# Hugging Face models
EMBEDDING_SERVICE=huggingface
HUGGINGFACE_MODEL=sentence-transformers/all-MiniLM-L6-v2
HUGGINGFACE_API_KEY=your_api_key
# Local embedding service
EMBEDDING_SERVICE=local
EMBEDDING_SERVICE_URL=http://localhost:8080/embeddings
```
### Query Enhancement
Enhance queries for better results:
```json
{
"queryEnhancement": {
"enabled": true,
"expandAcronyms": true,
"addSynonyms": true,
"contextualExpansion": true
}
}
```
### Result Filtering
Filter results based on criteria:
```json
{
"resultFiltering": {
"minRelevanceScore": 0.7,
"maxResults": 10,
"preferredServers": ["fetch", "playwright"],
"excludeServers": ["deprecated-server"]
}
}
```
### Feedback Learning
Improve results based on user feedback:
```bash
# Provide feedback on search results
curl -X POST http://localhost:3000/api/smart-routing/feedback \
-H "Content-Type: application/json" \
-H "Authorization: Bearer YOUR_JWT_TOKEN" \
-d '{
"queryId": "search-123",
"toolName": "fetch_html",
"rating": 5,
"successful": true,
"comments": "Perfect tool for the task"
}'
```
## Troubleshooting
<AccordionGroup>
<Accordion title="Database Connection Issues">
**Symptoms:**
- Smart Routing not available
- Database connection errors
- Embedding storage failures
**Solutions:**
1. Verify PostgreSQL is running
2. Check DATABASE_URL format
3. Ensure pgvector extension is installed
4. Test connection manually:
```bash
psql $DATABASE_URL -c "SELECT 1;"
```
</Accordion>
<Accordion title="Embedding Service Problems">
**Symptoms:**
- Tool indexing failures
- Query processing errors
- API rate limit errors
**Solutions:**
1. Verify API key validity
2. Check network connectivity
3. Monitor rate limits
4. Test embedding service:
```bash
curl -X POST https://api.openai.com/v1/embeddings \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-d '{"input": "test", "model": "text-embedding-3-small"}'
```
</Accordion>
<Accordion title="Poor Search Results">
**Symptoms:**
- Irrelevant tools returned
- Low relevance scores
- Missing expected tools
**Solutions:**
1. Adjust similarity threshold
2. Re-index tools with better descriptions
3. Use more specific queries
4. Check tool metadata quality
```bash
# Re-index all tools
curl -X POST http://localhost:3000/api/smart-routing/reindex \
-H "Authorization: Bearer YOUR_JWT_TOKEN"
```
</Accordion>
<Accordion title="Performance Issues">
**Symptoms:**
- Slow query responses
- High database load
- Memory usage spikes
**Solutions:**
1. Optimize database configuration
2. Increase cache sizes
3. Reduce batch sizes
4. Monitor system resources
```bash
# Check system performance
curl http://localhost:3000/api/smart-routing/performance \
-H "Authorization: Bearer YOUR_JWT_TOKEN"
```
</Accordion>
</AccordionGroup>
## Best Practices
### Query Writing
<Tip>
**Be Descriptive**: Use specific, descriptive language in queries for better tool matching.
</Tip>
<Tip>
**Include Context**: Provide relevant context about your task or domain for more accurate results.
</Tip>
<Tip>**Use Natural Language**: Write queries as you would describe the task to a human.</Tip>
### Tool Descriptions
<Warning>
**Quality Metadata**: Ensure MCP servers provide high-quality tool descriptions and metadata.
</Warning>
<Warning>**Regular Updates**: Keep tool descriptions current as functionality evolves.</Warning>
<Warning>
**Consistent Naming**: Use consistent naming conventions across tools and servers.
</Warning>
### System Maintenance
<Info>**Regular Re-indexing**: Periodically re-index tools to ensure embedding quality.</Info>
<Info>**Monitor Performance**: Track query patterns and optimize based on usage.</Info>
<Info>
**Update Models**: Consider updating to newer embedding models as they become available.
</Info>
## Next Steps
<CardGroup cols={2}>
<Card title="Authentication" icon="shield" href="/features/authentication">
User management and access control
</Card>
<Card title="Monitoring" icon="chart-line" href="/features/monitoring">
System monitoring and analytics
</Card>
<Card title="API Reference" icon="code" href="/api-reference/smart-routing">
Complete Smart Routing API documentation
</Card>
<Card title="Configuration" icon="cog" href="/configuration/environment-variables">
Advanced configuration options
</Card>
</CardGroup>
|