--- title: 'Smart Routing' description: 'AI-powered tool discovery using vector semantic search' --- ## Overview Smart Routing is MCPHub's intelligent tool discovery system that uses vector semantic search to automatically find the most relevant tools for any given task. Instead of manually specifying which tools to use, AI clients can describe what they want to accomplish, and Smart Routing will identify and provide access to the most appropriate tools. ## How Smart Routing Works ### 1. Tool Indexing When servers start up, Smart Routing automatically: - Discovers all available tools from MCP servers - Extracts tool metadata (names, descriptions, parameters) - Converts tool information to vector embeddings - Stores embeddings in PostgreSQL with pgvector ### 2. Semantic Search When a query is made: - User queries are converted to vector embeddings - Similarity search finds matching tools using cosine similarity - Dynamic thresholds filter out irrelevant results - Results are ranked by relevance score ### 3. Intelligent Filtering Smart Routing applies several filters: - **Relevance Threshold**: Only returns tools above similarity threshold - **Context Awareness**: Considers conversation context - **Tool Availability**: Ensures tools are currently accessible - **Permission Filtering**: Respects user access permissions ### 4. Tool Execution Found tools can be directly executed: - Parameter validation ensures correct tool usage - Error handling provides helpful feedback - Response formatting maintains consistency - Logging tracks tool usage for analytics ## Prerequisites Smart Routing requires additional setup compared to basic MCPHub usage: ### Required Components 1. **PostgreSQL with pgvector**: Vector database for embeddings storage 2. **Embedding Service**: OpenAI API or compatible service 3. **Environment Configuration**: Proper configuration variables ### Quick Setup Use this `docker-compose.yml` for complete setup: ```yaml version: '3.8' services: mcphub: image: samanhappy/mcphub:latest ports: - "3000:3000" environment: - DATABASE_URL=postgresql://mcphub:password@postgres:5432/mcphub - OPENAI_API_KEY=your_openai_api_key - ENABLE_SMART_ROUTING=true depends_on: - postgres volumes: - ./mcp_settings.json:/app/mcp_settings.json postgres: image: pgvector/pgvector:pg16 environment: - POSTGRES_DB=mcphub - POSTGRES_USER=mcphub - POSTGRES_PASSWORD=password volumes: - postgres_data:/var/lib/postgresql/data ports: - "5432:5432" volumes: postgres_data: ``` Start with: ```bash docker-compose up -d ``` 1. **Install PostgreSQL with pgvector**: ```bash # Using Docker docker run -d \ --name mcphub-postgres \ -e POSTGRES_DB=mcphub \ -e POSTGRES_USER=mcphub \ -e POSTGRES_PASSWORD=your_password \ -p 5432:5432 \ pgvector/pgvector:pg16 ``` 2. **Set Environment Variables**: ```bash export DATABASE_URL="postgresql://mcphub:your_password@localhost:5432/mcphub" export OPENAI_API_KEY="your_openai_api_key" export ENABLE_SMART_ROUTING="true" ``` 3. **Start MCPHub**: ```bash mcphub ``` Deploy with these Kubernetes manifests: ```yaml # postgres-deployment.yaml apiVersion: apps/v1 kind: Deployment metadata: name: postgres spec: selector: matchLabels: app: postgres template: metadata: labels: app: postgres spec: containers: - name: postgres image: pgvector/pgvector:pg16 env: - name: POSTGRES_DB value: mcphub - name: POSTGRES_USER value: mcphub - name: POSTGRES_PASSWORD valueFrom: secretKeyRef: name: postgres-secret key: password ports: - containerPort: 5432 --- # mcphub-deployment.yaml apiVersion: apps/v1 kind: Deployment metadata: name: mcphub spec: selector: matchLabels: app: mcphub template: metadata: labels: app: mcphub spec: containers: - name: mcphub image: samanhappy/mcphub:latest env: - name: DATABASE_URL value: "postgresql://mcphub:password@postgres:5432/mcphub" - name: OPENAI_API_KEY valueFrom: secretKeyRef: name: openai-secret key: api-key - name: ENABLE_SMART_ROUTING value: "true" ports: - containerPort: 3000 ``` ## Configuration ### Environment Variables Configure Smart Routing with these environment variables: ```bash # Required DATABASE_URL=postgresql://user:password@host:5432/database OPENAI_API_KEY=your_openai_api_key # Optional ENABLE_SMART_ROUTING=true EMBEDDING_MODEL=text-embedding-3-small SIMILARITY_THRESHOLD=0.7 MAX_TOOLS_RETURNED=10 EMBEDDING_BATCH_SIZE=100 ``` ### Configuration Options ```bash # Full PostgreSQL connection string DATABASE_URL=postgresql://username:password@host:port/database?schema=public # SSL configuration for cloud databases DATABASE_URL=postgresql://user:pass@host:5432/db?sslmode=require # Connection pool settings DATABASE_POOL_SIZE=20 DATABASE_TIMEOUT=30000 ``` ```bash # OpenAI (default) OPENAI_API_KEY=sk-your-api-key EMBEDDING_MODEL=text-embedding-3-small # Azure OpenAI AZURE_OPENAI_ENDPOINT=https://your-resource.openai.azure.com AZURE_OPENAI_API_KEY=your-api-key AZURE_OPENAI_DEPLOYMENT=your-embedding-deployment # Custom embedding service EMBEDDING_SERVICE_URL=https://your-embedding-service.com EMBEDDING_SERVICE_API_KEY=your-api-key ``` ```bash # Similarity threshold (0.0 to 1.0) SIMILARITY_THRESHOLD=0.7 # Maximum tools to return MAX_TOOLS_RETURNED=10 # Minimum query length for smart routing MIN_QUERY_LENGTH=5 # Cache TTL for embeddings (seconds) EMBEDDING_CACHE_TTL=3600 ``` ## Using Smart Routing ### Smart Routing Endpoint Access Smart Routing through the special `$smart` endpoint: ``` http://localhost:3000/mcp/$smart ``` ``` http://localhost:3000/sse/$smart ``` ### Basic Usage Connect your AI client to the Smart Routing endpoint and make natural language requests: ```bash # Example: Find tools for web scraping curl -X POST http://localhost:3000/mcp/$smart \ -H "Content-Type: application/json" \ -d '{ "jsonrpc": "2.0", "id": 1, "method": "tools/search", "params": { "query": "scrape website content and extract text" } }' ``` Response: ```json { "jsonrpc": "2.0", "id": 1, "result": { "tools": [ { "name": "fetch_html", "server": "fetch", "description": "Fetch and parse HTML content from a URL", "relevanceScore": 0.92, "parameters": { ... } }, { "name": "playwright_navigate", "server": "playwright", "description": "Navigate to a web page and extract content", "relevanceScore": 0.87, "parameters": { ... } } ] } } ``` ### Advanced Queries Smart Routing supports various query types: ```bash # What you want to accomplish curl -X POST http://localhost:3000/mcp/$smart \ -H "Content-Type: application/json" \ -d '{ "jsonrpc": "2.0", "id": 1, "method": "tools/search", "params": { "query": "send a message to a slack channel" } }' ``` ```bash # Specific domain or technology curl -X POST http://localhost:3000/mcp/$smart \ -H "Content-Type: application/json" \ -d '{ "jsonrpc": "2.0", "id": 1, "method": "tools/search", "params": { "query": "database operations SQL queries" } }' ``` ```bash # Specific actions curl -X POST http://localhost:3000/mcp/$smart \ -H "Content-Type: application/json" \ -d '{ "jsonrpc": "2.0", "id": 1, "method": "tools/search", "params": { "query": "create file upload to github repository" } }' ``` ```bash # Include context for better results curl -X POST http://localhost:3000/mcp/$smart \ -H "Content-Type: application/json" \ -d '{ "jsonrpc": "2.0", "id": 1, "method": "tools/search", "params": { "query": "automated testing web application", "context": { "project": "e-commerce website", "technologies": ["React", "Node.js"], "environment": "staging" } } }' ``` ### Tool Execution Once Smart Routing finds relevant tools, you can execute them directly: ```bash # Execute a found tool curl -X POST http://localhost:3000/mcp/$smart \ -H "Content-Type: application/json" \ -d '{ "jsonrpc": "2.0", "id": 2, "method": "tools/call", "params": { "name": "fetch_html", "arguments": { "url": "https://example.com" } } }' ``` ## Performance Optimization ### Embedding Cache Smart Routing caches embeddings to improve performance: ```bash # Configure cache settings EMBEDDING_CACHE_TTL=3600 # Cache for 1 hour EMBEDDING_CACHE_SIZE=10000 # Cache up to 10k embeddings EMBEDDING_CACHE_CLEANUP=300 # Cleanup every 5 minutes ``` ### Batch Processing Tools are indexed in batches for efficiency: ```bash # Batch size for embedding generation EMBEDDING_BATCH_SIZE=100 # Concurrent embedding requests EMBEDDING_CONCURRENCY=5 # Index update frequency INDEX_UPDATE_INTERVAL=3600 # Re-index every hour ``` ### Database Optimization Optimize PostgreSQL for vector operations: ```sql -- Create indexes for better performance CREATE INDEX ON tool_embeddings USING hnsw (embedding vector_cosine_ops); -- Adjust PostgreSQL settings ALTER SYSTEM SET shared_preload_libraries = 'vector'; ALTER SYSTEM SET max_connections = 200; ALTER SYSTEM SET shared_buffers = '256MB'; ALTER SYSTEM SET effective_cache_size = '1GB'; ``` ## Monitoring and Analytics ### Smart Routing Metrics Monitor Smart Routing performance: ```bash # Get Smart Routing statistics curl http://localhost:3000/api/smart-routing/stats \ -H "Authorization: Bearer YOUR_JWT_TOKEN" ``` Response includes: - Query count and frequency - Average response time - Embedding cache hit rate - Most popular tools - Query patterns ### Tool Usage Analytics Track which tools are found and used: ```bash # Get tool usage analytics curl http://localhost:3000/api/smart-routing/analytics \ -H "Authorization: Bearer YOUR_JWT_TOKEN" ``` Metrics include: - Tool discovery rates - Execution success rates - User satisfaction scores - Query-to-execution conversion ### Performance Monitoring Monitor system performance: ```bash # Database performance curl http://localhost:3000/api/smart-routing/db-stats \ -H "Authorization: Bearer YOUR_JWT_TOKEN" # Embedding service status curl http://localhost:3000/api/smart-routing/embedding-stats \ -H "Authorization: Bearer YOUR_JWT_TOKEN" ``` ## Advanced Features ### Custom Embeddings Use custom embedding models: ```bash # Hugging Face models EMBEDDING_SERVICE=huggingface HUGGINGFACE_MODEL=sentence-transformers/all-MiniLM-L6-v2 HUGGINGFACE_API_KEY=your_api_key # Local embedding service EMBEDDING_SERVICE=local EMBEDDING_SERVICE_URL=http://localhost:8080/embeddings ``` ### Query Enhancement Enhance queries for better results: ```json { "queryEnhancement": { "enabled": true, "expandAcronyms": true, "addSynonyms": true, "contextualExpansion": true } } ``` ### Result Filtering Filter results based on criteria: ```json { "resultFiltering": { "minRelevanceScore": 0.7, "maxResults": 10, "preferredServers": ["fetch", "playwright"], "excludeServers": ["deprecated-server"] } } ``` ### Feedback Learning Improve results based on user feedback: ```bash # Provide feedback on search results curl -X POST http://localhost:3000/api/smart-routing/feedback \ -H "Content-Type: application/json" \ -H "Authorization: Bearer YOUR_JWT_TOKEN" \ -d '{ "queryId": "search-123", "toolName": "fetch_html", "rating": 5, "successful": true, "comments": "Perfect tool for the task" }' ``` ## Troubleshooting **Symptoms:** - Smart Routing not available - Database connection errors - Embedding storage failures **Solutions:** 1. Verify PostgreSQL is running 2. Check DATABASE_URL format 3. Ensure pgvector extension is installed 4. Test connection manually: ```bash psql $DATABASE_URL -c "SELECT 1;" ``` **Symptoms:** - Tool indexing failures - Query processing errors - API rate limit errors **Solutions:** 1. Verify API key validity 2. Check network connectivity 3. Monitor rate limits 4. Test embedding service: ```bash curl -X POST https://api.openai.com/v1/embeddings \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -d '{"input": "test", "model": "text-embedding-3-small"}' ``` **Symptoms:** - Irrelevant tools returned - Low relevance scores - Missing expected tools **Solutions:** 1. Adjust similarity threshold 2. Re-index tools with better descriptions 3. Use more specific queries 4. Check tool metadata quality ```bash # Re-index all tools curl -X POST http://localhost:3000/api/smart-routing/reindex \ -H "Authorization: Bearer YOUR_JWT_TOKEN" ``` **Symptoms:** - Slow query responses - High database load - Memory usage spikes **Solutions:** 1. Optimize database configuration 2. Increase cache sizes 3. Reduce batch sizes 4. Monitor system resources ```bash # Check system performance curl http://localhost:3000/api/smart-routing/performance \ -H "Authorization: Bearer YOUR_JWT_TOKEN" ``` ## Best Practices ### Query Writing **Be Descriptive**: Use specific, descriptive language in queries for better tool matching. **Include Context**: Provide relevant context about your task or domain for more accurate results. **Use Natural Language**: Write queries as you would describe the task to a human. ### Tool Descriptions **Quality Metadata**: Ensure MCP servers provide high-quality tool descriptions and metadata. **Regular Updates**: Keep tool descriptions current as functionality evolves. **Consistent Naming**: Use consistent naming conventions across tools and servers. ### System Maintenance **Regular Re-indexing**: Periodically re-index tools to ensure embedding quality. **Monitor Performance**: Track query patterns and optimize based on usage. **Update Models**: Consider updating to newer embedding models as they become available. ## Next Steps User management and access control System monitoring and analytics Complete Smart Routing API documentation Advanced configuration options