File size: 8,842 Bytes
b86b824
 
 
 
 
 
 
e8e74ae
b86b824
e8e74ae
 
 
 
 
 
b86b824
e8e74ae
 
 
 
 
 
 
 
 
0773a1d
e8e74ae
 
 
 
 
 
 
 
b86b824
e8e74ae
 
 
 
b86b824
 
 
 
 
 
 
 
3414d75
b86b824
 
 
e8e74ae
 
 
0773a1d
e8e74ae
3414d75
e8e74ae
 
 
 
 
0773a1d
3414d75
e8e74ae
c9cbfde
e8e74ae
 
 
 
 
 
 
 
 
3414d75
b86b824
 
c9cbfde
b86b824
c9cbfde
b86b824
e8e74ae
b86b824
c9cbfde
b86b824
e8e74ae
 
 
 
3414d75
e8e74ae
 
 
3414d75
b86b824
e8e74ae
 
 
 
 
 
 
 
 
 
 
c9cbfde
b86b824
 
 
0773a1d
b86b824
0773a1d
b86b824
0773a1d
 
 
 
b86b824
0773a1d
b86b824
0773a1d
 
 
 
 
c9cbfde
0773a1d
 
 
 
 
 
 
 
 
 
 
c9cbfde
0773a1d
b86b824
0773a1d
 
3414d75
0773a1d
 
c9cbfde
0773a1d
 
 
24fabae
c9cbfde
b86b824
e8e74ae
 
 
3414d75
b86b824
e8e74ae
b86b824
 
9c4ffa5
b86b824
 
3414d75
b86b824
 
e8e74ae
b86b824
 
 
 
3414d75
e8e74ae
3414d75
e8e74ae
 
 
 
 
 
 
c9cbfde
3414d75
b86b824
e8e74ae
b86b824
 
 
3414d75
b9b01da
 
 
 
 
 
 
 
 
3414d75
9c4ffa5
 
 
 
 
c9cbfde
b86b824
9c4ffa5
 
 
 
 
 
 
 
 
c9cbfde
9c4ffa5
 
 
 
 
 
3414d75
b86b824
 
 
e8e74ae
b86b824
 
3414d75
b86b824
 
 
c9cbfde
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import gradio as gr
import json
import os
from pathlib import Path
from PIL import Image
import shutil
from ultralytics import YOLO
import requests

MODELS_DIR = "models"
MODELS_INFO_FILE = "models_info.json"
TEMP_DIR = "temp"
OUTPUT_DIR = "outputs"

def download_file(url, dest_path):
    """
    Download a file from a URL to the destination path.
    Args:
        url (str): The URL to download from.
        dest_path (str): The local path to save the file.
    Returns:
        bool: True if download succeeded, False otherwise.
    """
    try:
        response = requests.get(url, stream=True)
        response.raise_for_status()  
        with open(dest_path, 'wb') as f:
            for chunk in response.iter_content(chunk_size=8192):
                f.write(chunk)
        print(f"Downloaded {url} to {dest_path}.")
        return True
    except Exception as e:
        print(f"Failed to download {url}. Error: {e}")
        return False

def load_models(models_dir=MODELS_DIR, info_file=MODELS_INFO_FILE):
    """
    Load YOLO models and their information from the specified directory and JSON file.
    Downloads models if they are not already present.
    Args:
        models_dir (str): Path to the models directory.
        info_file (str): Path to the JSON file containing model info.
    Returns:
        dict: A dictionary of models and their associated information.
    """
    with open(info_file, 'r') as f:
        models_info = json.load(f)

    models = {}
    for model_info in models_info:
        model_name = model_info['model_name']
        display_name = model_info.get('display_name', model_name)
        model_dir = os.path.join(models_dir, model_name)
        os.makedirs(model_dir, exist_ok=True)
        model_path = os.path.join(model_dir, f"{model_name}.pt")  
        download_url = model_info['download_url']

        if not os.path.isfile(model_path):
            print(f"Model '{display_name}' not found locally. Downloading from {download_url}...")
            success = download_file(download_url, model_path)
            if not success:
                print(f"Skipping model '{display_name}' due to download failure.")
                continue  

        try:

            model = YOLO(model_path)
            models[model_name] = {
                'display_name': display_name,
                'model': model,
                'info': model_info
            }
            print(f"Loaded model '{display_name}' from '{model_path}'.")
        except Exception as e:
            print(f"Error loading model '{display_name}': {e}")

    return models

def get_model_info(model_info):
    """
    Retrieve formatted model information for display.
    Args:
        model_info (dict): The model's information dictionary.
    Returns:
        str: A formatted string containing model details.
    """
    info = model_info
    class_ids = info.get('class_ids', {})
    class_image_counts = info.get('class_image_counts', {})
    datasets_used = info.get('datasets_used', [])

    class_ids_formatted = "\n".join([f"{cid}: {cname}" for cid, cname in class_ids.items()])
    class_image_counts_formatted = "\n".join([f"{cname}: {count}" for cname, count in class_image_counts.items()])
    datasets_used_formatted = "\n".join([f"- {dataset}" for dataset in datasets_used])

    info_text = (
        f"**{info.get('display_name', 'Model Name')}**\n\n"
        f"**Architecture:** {info.get('architecture', 'N/A')}\n\n"
        f"**Training Epochs:** {info.get('training_epochs', 'N/A')}\n\n"
        f"**Batch Size:** {info.get('batch_size', 'N/A')}\n\n"
        f"**Optimizer:** {info.get('optimizer', 'N/A')}\n\n"
        f"**Learning Rate:** {info.get('learning_rate', 'N/A')}\n\n"
        f"**Data Augmentation Level:** {info.get('data_augmentation_level', 'N/A')}\n\n"
        f"**mAP@0.5:** {info.get('mAP_score', 'N/A')}\n\n"
        f"**Number of Images Trained On:** {info.get('num_images', 'N/A')}\n\n"
        f"**Class IDs:**\n{class_ids_formatted}\n\n"
        f"**Datasets Used:**\n{datasets_used_formatted}\n\n"
        f"**Class Image Counts:**\n{class_image_counts_formatted}"
    )
    return info_text

def predict_image(model_name, image, confidence, models):
    """
    Perform prediction on an uploaded image using the selected YOLO model.
    Args:
        model_name (str): The name of the selected model.
        image (PIL.Image.Image): The uploaded image.
        confidence (float): The confidence threshold for detections.
        models (dict): The dictionary containing models and their info.
    Returns:
        tuple: A status message, the processed image, and the path to the output image.
    """
    model_entry = models.get(model_name, {})
    model = model_entry.get('model', None)
    if not model:
        return "Error: Model not found.", None, None
    try:

        os.makedirs(TEMP_DIR, exist_ok=True)
        os.makedirs(OUTPUT_DIR, exist_ok=True)

        input_image_path = os.path.join(TEMP_DIR, f"{model_name}_input_image.jpg")
        image.save(input_image_path)

        results = model(input_image_path, save=True, save_txt=False, conf=confidence)

        latest_run = sorted(Path("runs/detect").glob("predict*"), key=os.path.getmtime)[-1]
        output_image_path = os.path.join(latest_run, Path(input_image_path).name)
        if not os.path.isfile(output_image_path):

            output_image_path = results[0].save()[0]

        final_output_path = os.path.join(OUTPUT_DIR, f"{model_name}_output_image.jpg")
        shutil.copy(output_image_path, final_output_path)

        output_image = Image.open(final_output_path)

        return "βœ… Prediction completed successfully.", output_image, final_output_path
    except Exception as e:
        return f"❌ Error during prediction: {str(e)}", None, None

def main():

    models = load_models()
    if not models:
        print("No models loaded. Please check your models_info.json and model URLs.")
        return

    with gr.Blocks() as demo:
        gr.Markdown("# πŸ§ͺ YOLOv11 Model Tester")
        gr.Markdown(
            """
            Upload images to test different YOLOv11 models. Select a model from the dropdown to see its details.
            """
        )

        with gr.Row():
            model_dropdown = gr.Dropdown(
                choices=[models[m]['display_name'] for m in models],
                label="Select Model",
                value=None
            )
            model_info = gr.Markdown("**Model Information will appear here.**")

        display_to_name = {models[m]['display_name']: m for m in models}

        def update_model_info(selected_display_name):
            if not selected_display_name:
                return "Please select a model."
            model_name = display_to_name.get(selected_display_name)
            if not model_name:
                return "Model information not available."
            model_entry = models[model_name]['info']
            return get_model_info(model_entry)

        model_dropdown.change(
            fn=update_model_info,
            inputs=model_dropdown,
            outputs=model_info
        )

        with gr.Row():
            confidence_slider = gr.Slider(
                minimum=0.0,
                maximum=1.0,
                step=0.01,
                value=0.25,
                label="Confidence Threshold",
                info="Adjust the minimum confidence required for detections to be displayed."
            )

        with gr.Tab("πŸ–ΌοΈ Image"):
            with gr.Column():
                image_input = gr.Image(
                    type='pil',
                    label="Upload Image for Prediction"

                )
                image_predict_btn = gr.Button("πŸ” Predict on Image")
                image_status = gr.Markdown("**Status will appear here.**")
                image_output = gr.Image(label="Predicted Image")
                image_download_btn = gr.File(label="⬇️ Download Predicted Image")

            def process_image(selected_display_name, image, confidence):
                if not selected_display_name:
                    return "❌ Please select a model.", None, None
                model_name = display_to_name.get(selected_display_name)
                return predict_image(model_name, image, confidence, models)

            image_predict_btn.click(
                fn=process_image,
                inputs=[model_dropdown, image_input, confidence_slider],
                outputs=[image_status, image_output, image_download_btn]
            )

        gr.Markdown(
            """
            ---
            **Note:** Models are downloaded from GitHub upon first use. Ensure that you have a stable internet connection and sufficient storage space.
            """
        )

    demo.launch()

if __name__ == "__main__":
    main()