Spaces:
Sleeping
Sleeping
File size: 8,842 Bytes
b86b824 e8e74ae b86b824 e8e74ae b86b824 e8e74ae 0773a1d e8e74ae b86b824 e8e74ae b86b824 3414d75 b86b824 e8e74ae 0773a1d e8e74ae 3414d75 e8e74ae 0773a1d 3414d75 e8e74ae c9cbfde e8e74ae 3414d75 b86b824 c9cbfde b86b824 c9cbfde b86b824 e8e74ae b86b824 c9cbfde b86b824 e8e74ae 3414d75 e8e74ae 3414d75 b86b824 e8e74ae c9cbfde b86b824 0773a1d b86b824 0773a1d b86b824 0773a1d b86b824 0773a1d b86b824 0773a1d c9cbfde 0773a1d c9cbfde 0773a1d b86b824 0773a1d 3414d75 0773a1d c9cbfde 0773a1d 24fabae c9cbfde b86b824 e8e74ae 3414d75 b86b824 e8e74ae b86b824 9c4ffa5 b86b824 3414d75 b86b824 e8e74ae b86b824 3414d75 e8e74ae 3414d75 e8e74ae c9cbfde 3414d75 b86b824 e8e74ae b86b824 3414d75 b9b01da 3414d75 9c4ffa5 c9cbfde b86b824 9c4ffa5 c9cbfde 9c4ffa5 3414d75 b86b824 e8e74ae b86b824 3414d75 b86b824 c9cbfde |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import gradio as gr
import json
import os
from pathlib import Path
from PIL import Image
import shutil
from ultralytics import YOLO
import requests
MODELS_DIR = "models"
MODELS_INFO_FILE = "models_info.json"
TEMP_DIR = "temp"
OUTPUT_DIR = "outputs"
def download_file(url, dest_path):
"""
Download a file from a URL to the destination path.
Args:
url (str): The URL to download from.
dest_path (str): The local path to save the file.
Returns:
bool: True if download succeeded, False otherwise.
"""
try:
response = requests.get(url, stream=True)
response.raise_for_status()
with open(dest_path, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
print(f"Downloaded {url} to {dest_path}.")
return True
except Exception as e:
print(f"Failed to download {url}. Error: {e}")
return False
def load_models(models_dir=MODELS_DIR, info_file=MODELS_INFO_FILE):
"""
Load YOLO models and their information from the specified directory and JSON file.
Downloads models if they are not already present.
Args:
models_dir (str): Path to the models directory.
info_file (str): Path to the JSON file containing model info.
Returns:
dict: A dictionary of models and their associated information.
"""
with open(info_file, 'r') as f:
models_info = json.load(f)
models = {}
for model_info in models_info:
model_name = model_info['model_name']
display_name = model_info.get('display_name', model_name)
model_dir = os.path.join(models_dir, model_name)
os.makedirs(model_dir, exist_ok=True)
model_path = os.path.join(model_dir, f"{model_name}.pt")
download_url = model_info['download_url']
if not os.path.isfile(model_path):
print(f"Model '{display_name}' not found locally. Downloading from {download_url}...")
success = download_file(download_url, model_path)
if not success:
print(f"Skipping model '{display_name}' due to download failure.")
continue
try:
model = YOLO(model_path)
models[model_name] = {
'display_name': display_name,
'model': model,
'info': model_info
}
print(f"Loaded model '{display_name}' from '{model_path}'.")
except Exception as e:
print(f"Error loading model '{display_name}': {e}")
return models
def get_model_info(model_info):
"""
Retrieve formatted model information for display.
Args:
model_info (dict): The model's information dictionary.
Returns:
str: A formatted string containing model details.
"""
info = model_info
class_ids = info.get('class_ids', {})
class_image_counts = info.get('class_image_counts', {})
datasets_used = info.get('datasets_used', [])
class_ids_formatted = "\n".join([f"{cid}: {cname}" for cid, cname in class_ids.items()])
class_image_counts_formatted = "\n".join([f"{cname}: {count}" for cname, count in class_image_counts.items()])
datasets_used_formatted = "\n".join([f"- {dataset}" for dataset in datasets_used])
info_text = (
f"**{info.get('display_name', 'Model Name')}**\n\n"
f"**Architecture:** {info.get('architecture', 'N/A')}\n\n"
f"**Training Epochs:** {info.get('training_epochs', 'N/A')}\n\n"
f"**Batch Size:** {info.get('batch_size', 'N/A')}\n\n"
f"**Optimizer:** {info.get('optimizer', 'N/A')}\n\n"
f"**Learning Rate:** {info.get('learning_rate', 'N/A')}\n\n"
f"**Data Augmentation Level:** {info.get('data_augmentation_level', 'N/A')}\n\n"
f"**mAP@0.5:** {info.get('mAP_score', 'N/A')}\n\n"
f"**Number of Images Trained On:** {info.get('num_images', 'N/A')}\n\n"
f"**Class IDs:**\n{class_ids_formatted}\n\n"
f"**Datasets Used:**\n{datasets_used_formatted}\n\n"
f"**Class Image Counts:**\n{class_image_counts_formatted}"
)
return info_text
def predict_image(model_name, image, confidence, models):
"""
Perform prediction on an uploaded image using the selected YOLO model.
Args:
model_name (str): The name of the selected model.
image (PIL.Image.Image): The uploaded image.
confidence (float): The confidence threshold for detections.
models (dict): The dictionary containing models and their info.
Returns:
tuple: A status message, the processed image, and the path to the output image.
"""
model_entry = models.get(model_name, {})
model = model_entry.get('model', None)
if not model:
return "Error: Model not found.", None, None
try:
os.makedirs(TEMP_DIR, exist_ok=True)
os.makedirs(OUTPUT_DIR, exist_ok=True)
input_image_path = os.path.join(TEMP_DIR, f"{model_name}_input_image.jpg")
image.save(input_image_path)
results = model(input_image_path, save=True, save_txt=False, conf=confidence)
latest_run = sorted(Path("runs/detect").glob("predict*"), key=os.path.getmtime)[-1]
output_image_path = os.path.join(latest_run, Path(input_image_path).name)
if not os.path.isfile(output_image_path):
output_image_path = results[0].save()[0]
final_output_path = os.path.join(OUTPUT_DIR, f"{model_name}_output_image.jpg")
shutil.copy(output_image_path, final_output_path)
output_image = Image.open(final_output_path)
return "β
Prediction completed successfully.", output_image, final_output_path
except Exception as e:
return f"β Error during prediction: {str(e)}", None, None
def main():
models = load_models()
if not models:
print("No models loaded. Please check your models_info.json and model URLs.")
return
with gr.Blocks() as demo:
gr.Markdown("# π§ͺ YOLOv11 Model Tester")
gr.Markdown(
"""
Upload images to test different YOLOv11 models. Select a model from the dropdown to see its details.
"""
)
with gr.Row():
model_dropdown = gr.Dropdown(
choices=[models[m]['display_name'] for m in models],
label="Select Model",
value=None
)
model_info = gr.Markdown("**Model Information will appear here.**")
display_to_name = {models[m]['display_name']: m for m in models}
def update_model_info(selected_display_name):
if not selected_display_name:
return "Please select a model."
model_name = display_to_name.get(selected_display_name)
if not model_name:
return "Model information not available."
model_entry = models[model_name]['info']
return get_model_info(model_entry)
model_dropdown.change(
fn=update_model_info,
inputs=model_dropdown,
outputs=model_info
)
with gr.Row():
confidence_slider = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.25,
label="Confidence Threshold",
info="Adjust the minimum confidence required for detections to be displayed."
)
with gr.Tab("πΌοΈ Image"):
with gr.Column():
image_input = gr.Image(
type='pil',
label="Upload Image for Prediction"
)
image_predict_btn = gr.Button("π Predict on Image")
image_status = gr.Markdown("**Status will appear here.**")
image_output = gr.Image(label="Predicted Image")
image_download_btn = gr.File(label="β¬οΈ Download Predicted Image")
def process_image(selected_display_name, image, confidence):
if not selected_display_name:
return "β Please select a model.", None, None
model_name = display_to_name.get(selected_display_name)
return predict_image(model_name, image, confidence, models)
image_predict_btn.click(
fn=process_image,
inputs=[model_dropdown, image_input, confidence_slider],
outputs=[image_status, image_output, image_download_btn]
)
gr.Markdown(
"""
---
**Note:** Models are downloaded from GitHub upon first use. Ensure that you have a stable internet connection and sufficient storage space.
"""
)
demo.launch()
if __name__ == "__main__":
main() |