File size: 11,047 Bytes
e2f8fd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import sys
import os
import re
import json
import time
import shutil
import argparse
import numpy as np
import matplotlib.pyplot as plt

from tqdm import tqdm
from datetime import datetime
from multiprocessing import Pool
from multiprocessing.dummy import Pool as ThreadPool 
from PIL import Image, ImageDraw
from skimage.measure import ransac

from modules.latex2bbox_color import latex2bbox_color
from modules.tokenize_latex.tokenize_latex import tokenize_latex
from modules.visual_matcher import HungarianMatcher, SimpleAffineTransform


def gen_color_list(num=10, gap=15):
    num += 1
    single_num = 255 // gap + 1
    max_num = single_num ** 3
    num = min(num, max_num)
    color_list = []
    for idx in range(num):
        R = idx // single_num**2
        GB = idx % single_num**2
        G = GB // single_num
        B = GB % single_num
        
        color_list.append((R*gap, G*gap, B*gap))
    return color_list[1:]

def update_inliers(ori_inliers, sub_inliers):
    inliers = np.copy(ori_inliers)
    sub_idx = -1
    for idx in range(len(ori_inliers)):
        if ori_inliers[idx] == False:
            sub_idx += 1
            if sub_inliers[sub_idx] == True:
                inliers[idx] = True
    return inliers

def reshape_inliers(ori_inliers, sub_inliers):
    inliers = np.copy(ori_inliers)
    sub_idx = -1
    for idx in range(len(ori_inliers)):
        if ori_inliers[idx] == False:
            sub_idx += 1
            if sub_inliers[sub_idx] == True:
                inliers[idx] = True
        else:
            inliers[idx] = False
    return inliers

def gen_token_order(box_list):
    new_box_list = copy.deepcopy(box_list)
    for idx, box in enumerate(new_box_list):
        new_box_list[idx]['order'] = idx / len(new_box_list)
    return new_box_list

def evaluation(data_root, user_id="test"):
    data_root = os.path.join(data_root, user_id)
    gt_box_dir = os.path.join(data_root, "gt")
    pred_box_dir = os.path.join(data_root, "pred")
    match_vis_dir = os.path.join(data_root, "vis_match")
    os.makedirs(match_vis_dir, exist_ok=True)
    
    max_iter = 3
    min_samples = 3
    residual_threshold = 25
    max_trials = 50
    
    metrics_per_img = {}
    gt_basename_list = [item.split(".")[0] for item in os.listdir(os.path.join(gt_box_dir, 'bbox'))]
    for basename in tqdm(gt_basename_list):
        gt_valid, pred_valid = True, True
        if not os.path.exists(os.path.join(gt_box_dir, 'bbox', basename+".jsonl")):
            gt_valid = False
        else:
            with open(os.path.join(gt_box_dir, 'bbox', basename+".jsonl"), 'r') as f:
                box_gt = []
                for line in f:
                    info = json.loads(line)
                    if info['bbox']:
                        box_gt.append(info)
            if not box_gt:
                gt_valid = False
        if not gt_valid:
            continue
        
        if not os.path.exists(os.path.join(pred_box_dir, 'bbox', basename+".jsonl")):
            pred_valid = False
        else:
            with open(os.path.join(pred_box_dir, 'bbox', basename+".jsonl"), 'r') as f:
                box_pred = []
                for line in f:
                    info = json.loads(line)
                    if info['bbox']:
                        box_pred.append(info)
            if not box_pred:
                pred_valid = False
        if not pred_valid:
            metrics_per_img[basename] = {
                "recall": 0,
                "precision": 0,
                "F1_score": 0,
            }
            continue       
        gt_img_path = os.path.join(gt_box_dir, 'vis', basename+"_base.png")
        pred_img_path = os.path.join(pred_box_dir, 'vis', basename+"_base.png")
        
        img_gt = Image.open(gt_img_path)
        img_pred = Image.open(pred_img_path)
        
        matcher = HungarianMatcher()
        matched_idxes = matcher(box_gt, box_pred, img_gt.size, img_pred.size)
        src = []
        dst = []
        for (idx1, idx2) in matched_idxes:
            x1min, y1min, x1max, y1max = box_gt[idx1]['bbox']
            x2min, y2min, x2max, y2max = box_pred[idx2]['bbox']
            x1_c, y1_c = float((x1min+x1max)/2), float((y1min+y1max)/2)
            x2_c, y2_c = float((x2min+x2max)/2), float((y2min+y2max)/2)
            src.append([y1_c, x1_c])
            dst.append([y2_c, x2_c])
            
        src = np.array(src)
        dst = np.array(dst)
        if src.shape[0] <= min_samples:
            inliers = np.array([True for _ in matched_idxes])
        else:
            inliers = np.array([False for _ in matched_idxes])
            for i in range(max_iter):
                if src[inliers==False].shape[0] <= min_samples:
                    break
                model, inliers_1 = ransac((src[inliers==False], dst[inliers==False]), SimpleAffineTransform, min_samples=min_samples, residual_threshold=residual_threshold, max_trials=max_trials, random_state=42)
                if inliers_1 is not None and inliers_1.any():
                    inliers = update_inliers(inliers, inliers_1)
                else:
                    break
                if len(inliers[inliers==True]) >= len(matched_idxes):
                    break

        for idx, (a,b) in enumerate(matched_idxes):
            if inliers[idx] == True and matcher.cost['token'][a, b] == 1:
                inliers[idx] = False
        
        final_match_num = len(inliers[inliers==True])
        recall = round(final_match_num/(len(box_gt)), 3)
        precision = round(final_match_num/(len(box_pred)), 3)
        F1_score = round(2*final_match_num/(len(box_gt)+len(box_pred)), 3)
        metrics_per_img[basename] = {
            "recall": recall,
            "precision": precision,
            "F1_score": F1_score,
        }
        
        if True:
            gap = 5
            W1, H1 = img_gt.size
            W2, H2 = img_pred.size
            H = H1 + H2 + gap
            W = max(W1, W2)

            vis_img = Image.new('RGB', (W, H), (255, 255, 255))
            vis_img.paste(img_gt, (0, 0))
            vis_img.paste(Image.new('RGB', (W, gap), (120, 120, 120)), (0, H1))
            vis_img.paste(img_pred, (0, H1+gap))
            
            match_img = vis_img.copy()
            match_draw = ImageDraw.Draw(match_img)

            gt_matched_idx = {
                a: flag
                for (a,b), flag in 
                zip(matched_idxes, inliers)
            }
            pred_matched_idx = {
                b: flag
                for (a,b), flag in 
                zip(matched_idxes, inliers)
            }
            
            for idx, box in enumerate(box_gt):
                if idx in gt_matched_idx and gt_matched_idx[idx]==True:
                    color = "green"
                else:
                    color = "red"
                x_min, y_min, x_max, y_max = box['bbox']
                match_draw.rectangle([x_min-1, y_min-1, x_max+1, y_max+1], fill=None, outline=color, width=2)
                
            for idx, box in enumerate(box_pred):
                if idx in pred_matched_idx and pred_matched_idx[idx]==True:
                    color = "green"
                else:
                    color = "red"
                x_min, y_min, x_max, y_max = box['bbox']
                match_draw.rectangle([x_min-1, y_min-1+H1+gap, x_max+1, y_max+1+H1+gap], fill=None, outline=color, width=2)
            
            vis_img.save(os.path.join(match_vis_dir, basename+"_base.png"))
            match_img.save(os.path.join(match_vis_dir, basename+".png"))
            
    score_list = [val['F1_score'] for _, val in metrics_per_img.items()]
    exp_list = [1 if score==1 else 0 for score in score_list]
    metrics_res = {
        "mean_score": round(np.mean(score_list), 3),
        "exp_rate": round(np.mean(exp_list), 3),
        "details": metrics_per_img
    }
    metric_res_path = os.path.join(data_root, "metrics_res.json")
    with open(metric_res_path, "w") as f:
        f.write(json.dumps(metrics_res, indent=2))
    return metrics_res, metric_res_path, match_vis_dir


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--input', '-i', type=str, default="assets/example/input_example.json")
    parser.add_argument('--output', '-o', type=str, default="output")
    parser.add_argument('--pools', '-p', type=int, default=240)
    args = parser.parse_args()
    print(args)
    
    json_input, data_root, pool_num = args.input, args.output, args.pools
    temp_dir = os.path.join(data_root, "temp_dir")
    exp_name = os.path.basename(json_input).split('.')[0]
    with open(json_input, "r") as f:
        input_data = json.load(f)
    img_ids = []
    groundtruths = []
    predictions = []
    for idx, item in enumerate(input_data):
        if "img_id" in item:
            img_ids.append(item["img_id"])
        else:
            img_ids.append(f"sample_{idx}")
        groundtruths.append(item['gt'])
        predictions.append(item['pred'])

    a = time.time()
    user_id = exp_name
    
    total_color_list = gen_color_list(num=5800)
    
    data_root = os.path.join(data_root, user_id)
    output_dir_info = {}
    input_args = []
    for subset, latex_list in zip(['gt', 'pred'], [groundtruths, predictions]):
        sub_temp_dir = os.path.join(temp_dir, f"{exp_name}_{subset}")
        os.makedirs(sub_temp_dir, exist_ok=True)
        output_path = os.path.join(data_root, subset)
        output_dir_info[output_path] = []
    
        os.makedirs(os.path.join(output_path, 'bbox'), exist_ok=True)
        os.makedirs(os.path.join(output_path, 'vis'), exist_ok=True)
        
        for idx, latex in tqdm(enumerate(latex_list), desc=f"collect {subset} latex ..."):
            basename = img_ids[idx]
            input_arg = latex, basename, output_path, sub_temp_dir, total_color_list
            input_args.append(input_arg)
    
    if pool_num > 1:
        print(datetime.now().strftime('%Y-%m-%d %H:%M:%S'), "using processpool, pool num:", pool_num, ", job num:", len(input_args))
        myP = Pool(args.pools)
        for input_arg in input_args:
            myP.apply_async(latex2bbox_color, args=(input_arg,))
        myP.close()
        myP.join()
    else:
        for input_arg in input_args:
            latex2bbox_color(input_arg)
    b = time.time()
    print(datetime.now().strftime('%Y-%m-%d %H:%M:%S'), "extract bbox done, time cost:", round(b-a, 3), "s")
    
    for subset in ['gt', 'pred']:
        shutil.rmtree(os.path.join(temp_dir, f"{exp_name}_{subset}"))
    
    c = time.time()
    metrics_res, metric_res_path, match_vis_dir = evaluation(args.output, exp_name)
    d = time.time()
    print(datetime.now().strftime('%Y-%m-%d %H:%M:%S'), "calculate metrics done, time cost:", round(d-c, 3), "s")
    
    print(f"=> process done, mean f1 score: {metrics_res['mean_score']}.")
    print(f"=> more details of metrics are saved in `{metric_res_path}`")
    print(f"=> visulization images are saved under `{match_vis_dir}`")