Spaces:
Sleeping
Sleeping
File size: 10,500 Bytes
227a7da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import gradio as gr
import pandas as pd
import redis
import json
import requests
from config import *
import functools
from embedding_setup import retriever, find_similar_occupation, compare_docs_with_context,generate_exp,generate_prompt_exp
from data_process import get_occupations_from_csv, get_courses_from_BA, get_occupation_detial, build_occupation_query
with open('/app/data/redis_data.json', 'r') as file:
data_dict = json.load(file)
#r = redis.Redis(host=REDIS_HOST, port=REDIS_PORT, db=REDIS_DB, decode_responses=True)
skill_details_mapping = {}
# Function to retrieve documents based on selected skills
def retrieve_documents(occupation,skills):
output = []
output.append(f"<div style=\"text-align: center; font-size: 24px;\">Empfehlungsergebnisse:</div>")
oc_uri = occupations.get(occupation, "")
skill_query = ''
candidate_docs = []
if isinstance(oc_uri, int):
df = pd.read_csv("/app/data/berufe_info.csv")
target_occupation = df[df['id'] == oc_uri]
target_occupation_name = target_occupation['short name'].values[0]
target_occupation_dsp = target_occupation['description'].values[0]
target_occupation_query = target_occupation_name + ' ' + target_occupation_dsp
target_occupation_query = target_occupation_query
else:
target_occupation = get_occupation_detial(oc_uri)
target_occupation_name, target_occupation_dsp, target_occupation_query = build_occupation_query(target_occupation)
for german_label in skills:
skill_query += german_label + ' '
ocsk_query = target_occupation_name + ' ' + german_label
skills_docs = retriever.get_relevant_documents(ocsk_query)
candidate_docs.extend(skills_docs[:2])
query = target_occupation_query + ' ' + skill_query
llama_query = 'info:' + target_occupation_name + ' ' + 'Skills gap:' + skill_query
print(query)
docs = retriever.get_relevant_documents(query)
candidate_docs.extend(docs[:5])
#remove duplicates
seen_course_ids = set()
candidate_doc_unique = []
for doc in candidate_docs:
course_id = doc.metadata.get('id','')
if course_id not in seen_course_ids:
candidate_doc_unique.append(doc)
seen_course_ids.add(course_id)
partial_compare_docs = functools.partial(compare_docs_with_context, target_occupation_name=target_occupation_name, target_occupation_dsp=target_occupation_dsp,skill_gap = skill_query)
sorted_docs = sorted(candidate_doc_unique, key=functools.cmp_to_key(partial_compare_docs), reverse=True)
batch_output = []
for doc in sorted_docs[:5]:
doc_name = doc.metadata.get('name', 'Unnamed Document')
doc_skill = doc.metadata.get('skills', '')
input_text = f"target occupation: {llama_query}\n Recommended course: name: {doc_name}, learning objectives: {doc_skill[:2000]}"
prompt = generate_prompt_exp(input_text)
batch_output += generate_exp(prompt)
# Evaluate the current batch of prompts
output.append(f"<b>Zielberuf:</b> {target_occupation_name}")
output.append(f"<b>Qualifikationslücke:</b> {skill_query}")
output.append(f"<b>Empfohlene Kurse:</b>")
for i in range(5):
doc = sorted_docs[i]
doc_name = doc.metadata.get('name', 'Unnamed Document')
doc_url = doc.metadata.get('url', '#')
doc_skill = doc.metadata.get('skills', '')
output.append(f"<a href='{doc_url}' target='_blank'>{doc_name}</a>")
output.append(f"<b>Empfehlungsgrund:</b> {batch_output[i]}")
output.append(f"<br>")
return "<br>".join(output)
def get_candidate_courses(occupation, skills):
output = []
output.append(f"<div style=\"text-align: center; font-size: 24px;\">Empfehlungsergebnisse:</div>")
df_lookup = pd.read_csv('/app/data/kldb_isco_lookup.csv')
df_berufe = pd.read_csv('/app/data/berufe_info.csv')
occupation_codes = set()
kldB_set = set()
occupation_hrefs = set()
BA_berufe = set()
oc_uri = occupations.get(occupation, "")
target_occupation = get_occupation_detial(oc_uri)
target_occupation_query = build_occupation_query(target_occupation)
for german_label in skills:
skill = skill_details_mapping.get(german_label, {})
uri = f'https://ec.europa.eu/esco/api/resource/skill?selectedVersion=v1.0.9&language=en&uri={skill["uri"]}'
try:
skill_response = requests.get(uri)
skill_response.raise_for_status()
skill_json = skill_response.json()
# Combine essential and optional occupations
skill_related_occupations = (skill_json['_links'].get('isEssentialForOccupation', []) +
skill_json['_links'].get('isOptionalForOccupation', []))
for occupation in skill_related_occupations:
href = occupation.get('href')
if href:
occupation_hrefs.add(href)
except requests.RequestException as e:
print(f"Error while fetching skill details: {e}")
for href in occupation_hrefs:
try:
occupation_response = requests.get(href)
occupation_response.raise_for_status()
occupation_details = occupation_response.json()
code = occupation_details.get('code')
if code:
occupation_codes.add(code.split('.')[0])
except requests.RequestException as e:
print(f"Error while fetching occupation details: {e}")
for isco_code in occupation_codes:
kldB_codes = df_lookup[df_lookup['isco08'] == int(isco_code)]['kldb2010'].values
for code in kldB_codes:
kldB_set.add(str(code))
dfs = []
for kldb in kldB_set:
berufe = df_berufe[df_berufe['KldB codes']=='B '+kldb]
dfs.append(berufe)
merged_df = pd.concat(dfs, ignore_index=True)
top_k_berufe = find_similar_occupation(target_occupation_query,merged_df,5,'cosine')
for beruf in top_k_berufe:
entry_requirement = beruf.metadata['entry_requirements']
corrected_json_string = entry_requirement.replace("'", '"')
entry_requirement_json = json.loads(corrected_json_string)
for js in entry_requirement_json:
BA_berufe.add(str(js['data_idref']))
result = get_courses_from_BA(BA_berufe)
courses = result
for course in courses['_embedded']['termine']:
output.append(f"<a href='{course['angebot']['link']}' target='_blank'>{course['angebot']['titel']}</a>")
return "<br>".join(output)
def get_occupation_skills(oc_uri):
#skills_json = r.get(oc_uri)
skills_json = data_dict.get(oc_uri, None)
skill_labels = []
if skills_json:
skills = json.loads(skills_json)
for skill in skills:
german_label = skill['preferredLabel']['de']
skill_details_mapping[german_label] = skill
skill_labels.append(german_label)
return skill_labels
else:
return skill_labels
def get_occupation_skills_BA(oc_uri):
df = pd.read_csv("/app/data/berufe_info.csv")
essential_skills = df[df['id'] == oc_uri]['essential skills'].values
optional_skills = df[df['id'] == oc_uri]['optional skills'].values
combined_skills = essential_skills[0][:-1] + ',' + optional_skills[0][1:]
combined_skills = combined_skills.replace("'", "\"")
skills = json.loads(combined_skills)
skill_labels = []
for skill in skills:
german_label = skill['skill']
skill_details_mapping[german_label] = skill
skill_labels.append(german_label)
return skill_labels
# Function to update the skills dropdown
def update_skills(occupation):
oc_uri = occupations.get(occupation, "")
if isinstance(oc_uri, int):
skills = get_occupation_skills_BA(oc_uri)
return gr.Dropdown(skills,label="aktuelle Fähigkeiten", multiselect=True,info='Bitte wählen Sie die Fähigkeiten aus, die Sie derzeit besitzen')
else:
skills = get_occupation_skills(oc_uri)
return gr.Dropdown(skills,label="aktuelle Fähigkeiten", multiselect=True,info='Bitte wählen Sie die Fähigkeiten aus, die Sie derzeit besitzen')
return
def update_skillgap(occupation, current_skills):
oc_uri = occupations.get(occupation, "")
if isinstance(oc_uri, int):
ocupation_skills = get_occupation_skills_BA(oc_uri)
else:
ocupation_skills = get_occupation_skills(oc_uri)
skill_gap = [skill for skill in ocupation_skills if skill not in current_skills]
return gr.Dropdown(skill_gap, label="Qualifikationslücke", multiselect=True, info='Bitte wählen Sie die Fähigkeiten aus, die Sie lernen möchten.')
if __name__ == "__main__":
# Load occupations from CSV
occupations_esco = get_occupations_from_csv(CSV_FILE_PATH)
df = pd.read_csv("/app/data/berufe_info.csv")
occupations_BA = df[['short name', 'id']].set_index('short name').to_dict()['id']
occupations = {**occupations_esco, **occupations_BA}
# Gradio interface
with gr.Blocks(title="MyEduLife Kursempfehlungssystem") as demo:
occupation_dropdown = gr.Dropdown(list(occupations.keys()), label="Zielberuf",info='Bitte wählen Sie Ihren Zielberuf aus.')
currentskill_dropdown = gr.Dropdown([],label="aktuelle Fähigkeiten", multiselect=True,info='Bitte wählen Sie die Fähigkeiten aus, die Sie derzeit besitzen')
sb_btn = gr.Button("Absenden")
skillgap_dropdown = gr.Dropdown([],label="Fähigkeiten", multiselect=True,info='Bitte wählen Sie die Fähigkeiten aus, die Sie lernen möchten.')
# Use gr.HTML to display the HTML content
button = gr.Button("Kursempfehlungen")
documents_output = gr.HTML()
occupation_dropdown.change(update_skills, inputs=occupation_dropdown, outputs=currentskill_dropdown)
sb_btn.click(
update_skillgap,
inputs=[occupation_dropdown,currentskill_dropdown],
outputs=skillgap_dropdown
)
button.click(
retrieve_documents,
inputs=[occupation_dropdown,skillgap_dropdown],
outputs=documents_output
)
print('Initialization completed')
demo.launch(server_name="0.0.0.0", server_port=7860)
|