File size: 18,528 Bytes
d2a06b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
from functools import partial
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
class Upsample2D(nn.Module):
"""
An upsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is
applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
upsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.use_conv_transpose = use_conv_transpose
self.name = name
conv = None
if use_conv_transpose:
conv = nn.ConvTranspose2d(channels, self.out_channels, 4, 2, 1)
elif use_conv:
conv = nn.Conv2d(self.channels, self.out_channels, 3, padding=1)
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
if name == "conv":
self.conv = conv
else:
self.Conv2d_0 = conv
def forward(self, x):
assert x.shape[1] == self.channels
if self.use_conv_transpose:
return self.conv(x)
x = F.interpolate(x, scale_factor=2.0, mode="nearest")
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
if self.use_conv:
if self.name == "conv":
x = self.conv(x)
else:
x = self.Conv2d_0(x)
return x
class Downsample2D(nn.Module):
"""
A downsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is
applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
downsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.padding = padding
stride = 2
self.name = name
if use_conv:
conv = nn.Conv2d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
else:
assert self.channels == self.out_channels
conv = nn.AvgPool2d(kernel_size=stride, stride=stride)
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
if name == "conv":
self.Conv2d_0 = conv
self.conv = conv
elif name == "Conv2d_0":
self.conv = conv
else:
self.conv = conv
def forward(self, x):
assert x.shape[1] == self.channels
if self.use_conv and self.padding == 0:
pad = (0, 1, 0, 1)
x = F.pad(x, pad, mode="constant", value=0)
assert x.shape[1] == self.channels
x = self.conv(x)
return x
class FirUpsample2D(nn.Module):
def __init__(self, channels=None, out_channels=None, use_conv=False, fir_kernel=(1, 3, 3, 1)):
super().__init__()
out_channels = out_channels if out_channels else channels
if use_conv:
self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1)
self.use_conv = use_conv
self.fir_kernel = fir_kernel
self.out_channels = out_channels
def _upsample_2d(self, x, weight=None, kernel=None, factor=2, gain=1):
"""Fused `upsample_2d()` followed by `Conv2d()`.
Args:
Padding is performed only once at the beginning, not between the operations. The fused op is considerably more
efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of arbitrary:
order.
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
C]`.
weight: Weight tensor of the shape `[filterH, filterW, inChannels,
outChannels]`. Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`.
kernel: FIR filter of the shape `[firH, firW]` or `[firN]`
(separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling.
factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0).
Returns:
Tensor of the shape `[N, C, H * factor, W * factor]` or `[N, H * factor, W * factor, C]`, and same datatype as
`x`.
"""
assert isinstance(factor, int) and factor >= 1
# Setup filter kernel.
if kernel is None:
kernel = [1] * factor
# setup kernel
kernel = np.asarray(kernel, dtype=np.float64)
if kernel.ndim == 1:
kernel = np.outer(kernel, kernel)
kernel /= np.sum(kernel)
kernel = kernel * (gain * (factor**2))
if self.use_conv:
convH = weight.shape[2]
convW = weight.shape[3]
inC = weight.shape[1]
p = (kernel.shape[0] - factor) - (convW - 1)
stride = (factor, factor)
# Determine data dimensions.
stride = [1, 1, factor, factor]
output_shape = ((x.shape[2] - 1) * factor + convH, (x.shape[3] - 1) * factor + convW)
output_padding = (
output_shape[0] - (x.shape[2] - 1) * stride[0] - convH,
output_shape[1] - (x.shape[3] - 1) * stride[1] - convW,
)
assert output_padding[0] >= 0 and output_padding[1] >= 0
inC = weight.shape[1]
num_groups = x.shape[1] // inC
# Transpose weights.
weight = torch.reshape(weight, (num_groups, -1, inC, convH, convW))
weight = weight[..., ::-1, ::-1].permute(0, 2, 1, 3, 4)
weight = torch.reshape(weight, (num_groups * inC, -1, convH, convW))
x = F.conv_transpose2d(x, weight, stride=stride, output_padding=output_padding, padding=0)
x = upfirdn2d_native(x, torch.tensor(kernel, device=x.device), pad=((p + 1) // 2 + factor - 1, p // 2 + 1))
else:
p = kernel.shape[0] - factor
x = upfirdn2d_native(
x, torch.tensor(kernel, device=x.device), up=factor, pad=((p + 1) // 2 + factor - 1, p // 2)
)
return x
def forward(self, x):
if self.use_conv:
height = self._upsample_2d(x, self.Conv2d_0.weight, kernel=self.fir_kernel)
height = height + self.Conv2d_0.bias.reshape(1, -1, 1, 1)
else:
height = self._upsample_2d(x, kernel=self.fir_kernel, factor=2)
return height
class FirDownsample2D(nn.Module):
def __init__(self, channels=None, out_channels=None, use_conv=False, fir_kernel=(1, 3, 3, 1)):
super().__init__()
out_channels = out_channels if out_channels else channels
if use_conv:
self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1)
self.fir_kernel = fir_kernel
self.use_conv = use_conv
self.out_channels = out_channels
def _downsample_2d(self, x, weight=None, kernel=None, factor=2, gain=1):
"""Fused `Conv2d()` followed by `downsample_2d()`.
Args:
Padding is performed only once at the beginning, not between the operations. The fused op is considerably more
efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of arbitrary:
order.
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. w: Weight tensor of the shape `[filterH,
filterW, inChannels, outChannels]`. Grouped convolution can be performed by `inChannels = x.shape[0] //
numGroups`. k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] *
factor`, which corresponds to average pooling. factor: Integer downsampling factor (default: 2). gain:
Scaling factor for signal magnitude (default: 1.0).
Returns:
Tensor of the shape `[N, C, H // factor, W // factor]` or `[N, H // factor, W // factor, C]`, and same
datatype as `x`.
"""
assert isinstance(factor, int) and factor >= 1
if kernel is None:
kernel = [1] * factor
# setup kernel
kernel = np.asarray(kernel, dtype=np.float64)
if kernel.ndim == 1:
kernel = np.outer(kernel, kernel)
kernel /= np.sum(kernel)
kernel = kernel * gain
if self.use_conv:
_, _, convH, convW = weight.shape
p = (kernel.shape[0] - factor) + (convW - 1)
s = [factor, factor]
x = upfirdn2d_native(x, torch.tensor(kernel, device=x.device), pad=((p + 1) // 2, p // 2))
x = F.conv2d(x, weight, stride=s, padding=0)
else:
p = kernel.shape[0] - factor
x = upfirdn2d_native(x, torch.tensor(kernel, device=x.device), down=factor, pad=((p + 1) // 2, p // 2))
return x
def forward(self, x):
if self.use_conv:
x = self._downsample_2d(x, weight=self.Conv2d_0.weight, kernel=self.fir_kernel)
x = x + self.Conv2d_0.bias.reshape(1, -1, 1, 1)
else:
x = self._downsample_2d(x, kernel=self.fir_kernel, factor=2)
return x
class ResnetBlock2D(nn.Module):
def __init__(
self,
*,
in_channels,
out_channels=None,
conv_shortcut=False,
dropout=0.0,
temb_channels=512,
groups=32,
groups_out=None,
pre_norm=True,
eps=1e-6,
non_linearity="swish",
time_embedding_norm="default",
kernel=None,
output_scale_factor=1.0,
use_nin_shortcut=None,
up=False,
down=False,
):
super().__init__()
self.pre_norm = pre_norm
self.pre_norm = True
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.use_conv_shortcut = conv_shortcut
self.time_embedding_norm = time_embedding_norm
self.up = up
self.down = down
self.output_scale_factor = output_scale_factor
if groups_out is None:
groups_out = groups
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
if temb_channels is not None:
self.time_emb_proj = torch.nn.Linear(temb_channels, out_channels)
else:
self.time_emb_proj = None
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
self.dropout = torch.nn.Dropout(dropout)
self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
if non_linearity == "swish":
self.nonlinearity = lambda x: F.silu(x)
elif non_linearity == "mish":
self.nonlinearity = Mish()
elif non_linearity == "silu":
self.nonlinearity = nn.SiLU()
self.upsample = self.downsample = None
if self.up:
if kernel == "fir":
fir_kernel = (1, 3, 3, 1)
self.upsample = lambda x: upsample_2d(x, kernel=fir_kernel)
elif kernel == "sde_vp":
self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest")
else:
self.upsample = Upsample2D(in_channels, use_conv=False)
elif self.down:
if kernel == "fir":
fir_kernel = (1, 3, 3, 1)
self.downsample = lambda x: downsample_2d(x, kernel=fir_kernel)
elif kernel == "sde_vp":
self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2)
else:
self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name="op")
self.use_nin_shortcut = self.in_channels != self.out_channels if use_nin_shortcut is None else use_nin_shortcut
self.conv_shortcut = None
if self.use_nin_shortcut:
self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
def forward(self, x, temb):
hidden_states = x
# make sure hidden states is in float32
# when running in half-precision
hidden_states = self.norm1(hidden_states.double()).type(hidden_states.dtype)
hidden_states = self.nonlinearity(hidden_states)
if self.upsample is not None:
x = self.upsample(x)
hidden_states = self.upsample(hidden_states)
elif self.downsample is not None:
x = self.downsample(x)
hidden_states = self.downsample(hidden_states)
hidden_states = self.conv1(hidden_states)
if temb is not None:
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None]
hidden_states = hidden_states + temb
# make sure hidden states is in float32
# when running in half-precision
hidden_states = self.norm2(hidden_states.double()).type(hidden_states.dtype)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.conv2(hidden_states)
if self.conv_shortcut is not None:
x = self.conv_shortcut(x)
out = (x + hidden_states) / self.output_scale_factor
return out
class Mish(torch.nn.Module):
def forward(self, x):
return x * torch.tanh(torch.nn.functional.softplus(x))
def upsample_2d(x, kernel=None, factor=2, gain=1):
r"""Upsample2D a batch of 2D images with the given filter.
Args:
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given
filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified
`gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is a:
multiple of the upsampling factor.
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
C]`.
k: FIR filter of the shape `[firH, firW]` or `[firN]`
(separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling.
factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0).
Returns:
Tensor of the shape `[N, C, H * factor, W * factor]`
"""
assert isinstance(factor, int) and factor >= 1
if kernel is None:
kernel = [1] * factor
kernel = np.asarray(kernel, dtype=np.float64)
if kernel.ndim == 1:
kernel = np.outer(kernel, kernel)
kernel /= np.sum(kernel)
kernel = kernel * (gain * (factor**2))
p = kernel.shape[0] - factor
return upfirdn2d_native(
x, torch.tensor(kernel, device=x.device), up=factor, pad=((p + 1) // 2 + factor - 1, p // 2)
)
def downsample_2d(x, kernel=None, factor=2, gain=1):
r"""Downsample2D a batch of 2D images with the given filter.
Args:
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the
given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the
specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its
shape is a multiple of the downsampling factor.
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
C]`.
kernel: FIR filter of the shape `[firH, firW]` or `[firN]`
(separable). The default is `[1] * factor`, which corresponds to average pooling.
factor: Integer downsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0).
Returns:
Tensor of the shape `[N, C, H // factor, W // factor]`
"""
assert isinstance(factor, int) and factor >= 1
if kernel is None:
kernel = [1] * factor
kernel = np.asarray(kernel, dtype=np.float64)
if kernel.ndim == 1:
kernel = np.outer(kernel, kernel)
kernel /= np.sum(kernel)
kernel = kernel * gain
p = kernel.shape[0] - factor
return upfirdn2d_native(x, torch.tensor(kernel, device=x.device), down=factor, pad=((p + 1) // 2, p // 2))
def upfirdn2d_native(input, kernel, up=1, down=1, pad=(0, 0)):
up_x = up_y = up
down_x = down_y = down
pad_x0 = pad_y0 = pad[0]
pad_x1 = pad_y1 = pad[1]
_, channel, in_h, in_w = input.shape
input = input.reshape(-1, in_h, in_w, 1)
_, in_h, in_w, minor = input.shape
kernel_h, kernel_w = kernel.shape
out = input.view(-1, in_h, 1, in_w, 1, minor)
# Temporary workaround for mps specific issue: https://github.com/pytorch/pytorch/issues/84535
if input.device.type == "mps":
out = out.to("cpu")
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
out = out.to(input.device) # Move back to mps if necessary
out = out[
:,
max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
:,
]
out = out.permute(0, 3, 1, 2)
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
out = F.conv2d(out, w)
out = out.reshape(
-1,
minor,
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
)
out = out.permute(0, 2, 3, 1)
out = out[:, ::down_y, ::down_x, :]
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
return out.view(-1, channel, out_h, out_w)
|