File size: 9,049 Bytes
8aad0a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import ctypes
import os
import sys
from pathlib import Path

import ffmpeg
import gradio as gr
import numpy as np
import pandas as pd

from tools.i18n.i18n import I18nAuto

i18n = I18nAuto(language=os.environ.get("language", "Auto"))


def load_audio(file, sr):
    try:
        # https://github.com/openai/whisper/blob/main/whisper/audio.py#L26
        # This launches a subprocess to decode audio while down-mixing and resampling as necessary.
        # Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
        file = clean_path(file)  # 防止小白拷路径头尾带了空格和"和回车
        if os.path.exists(file) is False:
            raise RuntimeError("You input a wrong audio path that does not exists, please fix it!")
        out, _ = (
            ffmpeg.input(file, threads=0)
            .output("-", format="f32le", acodec="pcm_f32le", ac=1, ar=sr)
            .run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
        )
    except Exception:
        out, _ = (
            ffmpeg.input(file, threads=0)
            .output("-", format="f32le", acodec="pcm_f32le", ac=1, ar=sr)
            .run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True)
        )  # Expose the Error
        raise RuntimeError(i18n("音频加载失败"))

    return np.frombuffer(out, np.float32).flatten()


def clean_path(path_str: str):
    if path_str.endswith(("\\", "/")):
        return clean_path(path_str[0:-1])
    path_str = path_str.replace("/", os.sep).replace("\\", os.sep)
    return path_str.strip(
        " '\n\"\u202a"
    )  # path_str.strip(" ").strip('\'').strip("\n").strip('"').strip(" ").strip("\u202a")


def check_for_existance(file_list: list = None, is_train=False, is_dataset_processing=False):
    files_status = []
    if is_train == True and file_list:
        file_list.append(os.path.join(file_list[0], "2-name2text.txt"))
        file_list.append(os.path.join(file_list[0], "3-bert"))
        file_list.append(os.path.join(file_list[0], "4-cnhubert"))
        file_list.append(os.path.join(file_list[0], "5-wav32k"))
        file_list.append(os.path.join(file_list[0], "6-name2semantic.tsv"))
    for file in file_list:
        if os.path.exists(file):
            files_status.append(True)
        else:
            files_status.append(False)
    if sum(files_status) != len(files_status):
        if is_train:
            for file, status in zip(file_list, files_status):
                if status:
                    pass
                else:
                    gr.Warning(file)
            gr.Warning(i18n("以下文件或文件夹不存在"))
            return False
        elif is_dataset_processing:
            if files_status[0]:
                return True
            elif not files_status[0]:
                gr.Warning(file_list[0])
            elif not files_status[1] and file_list[1]:
                gr.Warning(file_list[1])
            gr.Warning(i18n("以下文件或文件夹不存在"))
            return False
        else:
            if file_list[0]:
                gr.Warning(file_list[0])
                gr.Warning(i18n("以下文件或文件夹不存在"))
            else:
                gr.Warning(i18n("路径不能为空"))
            return False
    return True


def check_details(path_list=None, is_train=False, is_dataset_processing=False):
    if is_dataset_processing:
        list_path, audio_path = path_list
        if not list_path.endswith(".list"):
            gr.Warning(i18n("请填入正确的List路径"))
            return
        if audio_path:
            if not os.path.isdir(audio_path):
                gr.Warning(i18n("请填入正确的音频文件夹路径"))
                return
        with open(list_path, "r", encoding="utf8") as f:
            line = f.readline().strip("\n").split("\n")
        wav_name, _, __, ___ = line[0].split("|")
        wav_name = clean_path(wav_name)
        if audio_path != "" and audio_path != None:
            wav_name = os.path.basename(wav_name)
            wav_path = "%s/%s" % (audio_path, wav_name)
        else:
            wav_path = wav_name
        if os.path.exists(wav_path):
            ...
        else:
            gr.Warning(wav_path+i18n("路径错误"))
        return
    if is_train:
        path_list.append(os.path.join(path_list[0], "2-name2text.txt"))
        path_list.append(os.path.join(path_list[0], "4-cnhubert"))
        path_list.append(os.path.join(path_list[0], "5-wav32k"))
        path_list.append(os.path.join(path_list[0], "6-name2semantic.tsv"))
        phone_path, hubert_path, wav_path, semantic_path = path_list[1:]
        with open(phone_path, "r", encoding="utf-8") as f:
            if f.read(1):
                ...
            else:
                gr.Warning(i18n("缺少音素数据集"))
        if os.listdir(hubert_path):
            ...
        else:
            gr.Warning(i18n("缺少Hubert数据集"))
        if os.listdir(wav_path):
            ...
        else:
            gr.Warning(i18n("缺少音频数据集"))
        df = pd.read_csv(semantic_path, delimiter="\t", encoding="utf-8")
        if len(df) >= 1:
            ...
        else:
            gr.Warning(i18n("缺少语义数据集"))


def load_cudnn():
    import torch

    if not torch.cuda.is_available():
        print("[INFO] CUDA is not available, skipping cuDNN setup.")
        return

    if sys.platform == "win32":
        torch_lib_dir = Path(torch.__file__).parent / "lib"
        if torch_lib_dir.exists():
            os.add_dll_directory(str(torch_lib_dir))
            print(f"[INFO] Added DLL directory: {torch_lib_dir}")
            matching_files = sorted(torch_lib_dir.glob("cudnn_cnn*.dll"))
            if not matching_files:
                print(f"[ERROR] No cudnn_cnn*.dll found in {torch_lib_dir}")
                return
            for dll_path in matching_files:
                dll_name = os.path.basename(dll_path)
                try:
                    ctypes.CDLL(dll_name)
                    print(f"[INFO] Loaded: {dll_name}")
                except OSError as e:
                    print(f"[WARNING] Failed to load {dll_name}: {e}")
        else:
            print(f"[WARNING] Torch lib directory not found: {torch_lib_dir}")

    elif sys.platform == "linux":
        site_packages = Path(torch.__file__).resolve().parents[1]
        cudnn_dir = site_packages / "nvidia" / "cudnn" / "lib"

        if not cudnn_dir.exists():
            print(f"[ERROR] cudnn dir not found: {cudnn_dir}")
            return

        matching_files = sorted(cudnn_dir.glob("libcudnn_cnn*.so*"))
        if not matching_files:
            print(f"[ERROR] No libcudnn_cnn*.so* found in {cudnn_dir}")
            return

        for so_path in matching_files:
            try:
                ctypes.CDLL(so_path, mode=ctypes.RTLD_GLOBAL)  # type: ignore
                print(f"[INFO] Loaded: {so_path}")
            except OSError as e:
                print(f"[WARNING] Failed to load {so_path}: {e}")


def load_nvrtc():
    import torch

    if not torch.cuda.is_available():
        print("[INFO] CUDA is not available, skipping nvrtc setup.")
        return

    if sys.platform == "win32":
        torch_lib_dir = Path(torch.__file__).parent / "lib"
        if torch_lib_dir.exists():
            os.add_dll_directory(str(torch_lib_dir))
            print(f"[INFO] Added DLL directory: {torch_lib_dir}")
            matching_files = sorted(torch_lib_dir.glob("nvrtc*.dll"))
            if not matching_files:
                print(f"[ERROR] No nvrtc*.dll found in {torch_lib_dir}")
                return
            for dll_path in matching_files:
                dll_name = os.path.basename(dll_path)
                try:
                    ctypes.CDLL(dll_name)
                    print(f"[INFO] Loaded: {dll_name}")
                except OSError as e:
                    print(f"[WARNING] Failed to load {dll_name}: {e}")
        else:
            print(f"[WARNING] Torch lib directory not found: {torch_lib_dir}")

    elif sys.platform == "linux":
        site_packages = Path(torch.__file__).resolve().parents[1]
        nvrtc_dir = site_packages / "nvidia" / "cuda_nvrtc" / "lib"

        if not nvrtc_dir.exists():
            print(f"[ERROR] nvrtc dir not found: {nvrtc_dir}")
            return

        matching_files = sorted(nvrtc_dir.glob("libnvrtc*.so*"))
        if not matching_files:
            print(f"[ERROR] No libnvrtc*.so* found in {nvrtc_dir}")
            return

        for so_path in matching_files:
            try:
                ctypes.CDLL(so_path, mode=ctypes.RTLD_GLOBAL)  # type: ignore
                print(f"[INFO] Loaded: {so_path}")
            except OSError as e:
                print(f"[WARNING] Failed to load {so_path}: {e}")