File size: 2,101 Bytes
2410db3 1cb6527 2410db3 1cb6527 b81c54e 2410db3 1cb6527 2410db3 1cb6527 2410db3 1cb6527 2410db3 1cb6527 2410db3 1cb6527 2410db3 1cb6527 2410db3 1cb6527 2410db3 1cb6527 2410db3 1cb6527 2410db3 1cb6527 2410db3 1cb6527 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
import gradio as gr
from huggingface_hub import InferenceClient
from unsloth.chat_templates import get_chat_template
# Initialize the InferenceClient with the appropriate model
client = InferenceClient("wop/kosmox")
# Define the chat template and tokenizer configuration
tokenizer = get_chat_template(
tokenizer=None, # Assuming you need to pass an actual tokenizer here
chat_template="phi-3",
mapping={"role": "from", "content": "value", "user": "human", "assistant": "gpt"},
)
def format_messages(system_message, history, user_message):
# Create a formatted string according to the specified chat template
formatted_message = "<s>\n"
if system_message:
formatted_message += f"{system_message}\n"
for user_msg, assistant_msg in history:
if user_msg:
formatted_message += f"{user_msg}\n"
if assistant_msg:
formatted_message += f"{assistant_msg}\n"
formatted_message += f"{user_message}\n"
return formatted_message
def respond(
message: str,
history: list[tuple[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
):
# Format the messages
formatted_message = format_messages(system_message, history, message)
response = ""
# Stream the response from the model
for message in client.chat_completion(
formatted_message,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
# Define the Gradio interface
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Textbox(value="You are AI.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
if __name__ == "__main__":
demo.launch()
|