Spaces:
Paused
Paused
File size: 16,483 Bytes
dfcd6b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
# !pip install -q git+https://github.com/huggingface/transformers.git datasets sentencepiece
# !pip install -q pytorch-lightning==1.9.5 wandb
from config import settings
from datasets import load_dataset
from transformers import VisionEncoderDecoderConfig
from transformers import DonutProcessor, VisionEncoderDecoderModel
import json
import random
from typing import Any, List, Tuple
import torch
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
import re
from nltk import edit_distance
import numpy as np
import os
import time
import pytorch_lightning as pl
from functools import lru_cache
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.callbacks import Callback
from config import settings
added_tokens = []
dataset_name = settings.dataset
base_config_name = settings.base_config
base_processor_name = settings.base_processor
base_model_name = settings.base_model
model_name = settings.model
@lru_cache(maxsize=1)
def prepare_job():
print("Preparing job...")
dataset = load_dataset(dataset_name)
max_length = 768
image_size = [1280, 960]
# update image_size of the encoder
# during pre-training, a larger image size was used
config = VisionEncoderDecoderConfig.from_pretrained(base_config_name)
config.encoder.image_size = image_size # (height, width)
# update max_length of the decoder (for generation)
config.decoder.max_length = max_length
# TODO we should actually update max_position_embeddings and interpolate the pre-trained ones:
# https://github.com/clovaai/donut/blob/0acc65a85d140852b8d9928565f0f6b2d98dc088/donut/model.py#L602
processor = DonutProcessor.from_pretrained(base_processor_name)
model = VisionEncoderDecoderModel.from_pretrained(base_model_name, config=config)
return model, processor, dataset, config, image_size, max_length
class DonutDataset(Dataset):
"""
DonutDataset which is saved in huggingface datasets format. (see details in https://huggingface.co/docs/datasets)
Each row, consists of image path(png/jpg/jpeg) and gt data (json/jsonl/txt),
and it will be converted into input_tensor(vectorized image) and input_ids(tokenized string).
Args:
dataset_name_or_path: name of dataset (available at huggingface.co/datasets) or the path containing image files and metadata.jsonl
max_length: the max number of tokens for the target sequences
split: whether to load "train", "validation" or "test" split
ignore_id: ignore_index for torch.nn.CrossEntropyLoss
task_start_token: the special token to be fed to the decoder to conduct the target task
prompt_end_token: the special token at the end of the sequences
sort_json_key: whether or not to sort the JSON keys
"""
def __init__(
self,
dataset_name_or_path: str,
max_length: int,
split: str = "train",
ignore_id: int = -100,
task_start_token: str = "<s>",
prompt_end_token: str = None,
sort_json_key: bool = True,
):
super().__init__()
model, processor, dataset, config, image_size, p1 = prepare_job()
self.max_length = max_length
self.split = split
self.ignore_id = ignore_id
self.task_start_token = task_start_token
self.prompt_end_token = prompt_end_token if prompt_end_token else task_start_token
self.sort_json_key = sort_json_key
self.dataset = load_dataset(dataset_name_or_path, split=self.split)
self.dataset_length = len(self.dataset)
self.gt_token_sequences = []
for sample in self.dataset:
ground_truth = json.loads(sample["ground_truth"])
if "gt_parses" in ground_truth: # when multiple ground truths are available, e.g., docvqa
assert isinstance(ground_truth["gt_parses"], list)
gt_jsons = ground_truth["gt_parses"]
else:
assert "gt_parse" in ground_truth and isinstance(ground_truth["gt_parse"], dict)
gt_jsons = [ground_truth["gt_parse"]]
self.gt_token_sequences.append(
[
self.json2token(
gt_json,
update_special_tokens_for_json_key=self.split == "train",
sort_json_key=self.sort_json_key,
)
+ processor.tokenizer.eos_token
for gt_json in gt_jsons # load json from list of json
]
)
self.add_tokens([self.task_start_token, self.prompt_end_token])
self.prompt_end_token_id = processor.tokenizer.convert_tokens_to_ids(self.prompt_end_token)
def json2token(self, obj: Any, update_special_tokens_for_json_key: bool = True, sort_json_key: bool = True):
"""
Convert an ordered JSON object into a token sequence
"""
if type(obj) == dict:
if len(obj) == 1 and "text_sequence" in obj:
return obj["text_sequence"]
else:
output = ""
if sort_json_key:
keys = sorted(obj.keys(), reverse=True)
else:
keys = obj.keys()
for k in keys:
if update_special_tokens_for_json_key:
self.add_tokens([fr"<s_{k}>", fr"</s_{k}>"])
output += (
fr"<s_{k}>"
+ self.json2token(obj[k], update_special_tokens_for_json_key, sort_json_key)
+ fr"</s_{k}>"
)
return output
elif type(obj) == list:
return r"<sep/>".join(
[self.json2token(item, update_special_tokens_for_json_key, sort_json_key) for item in obj]
)
else:
obj = str(obj)
if f"<{obj}/>" in added_tokens:
obj = f"<{obj}/>" # for categorical special tokens
return obj
def add_tokens(self, list_of_tokens: List[str]):
"""
Add special tokens to tokenizer and resize the token embeddings of the decoder
"""
model, processor, dataset, config, image_size, p1 = prepare_job()
newly_added_num = processor.tokenizer.add_tokens(list_of_tokens)
if newly_added_num > 0:
model.decoder.resize_token_embeddings(len(processor.tokenizer))
added_tokens.extend(list_of_tokens)
def __len__(self) -> int:
return self.dataset_length
def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Load image from image_path of given dataset_path and convert into input_tensor and labels
Convert gt data into input_ids (tokenized string)
Returns:
input_tensor : preprocessed image
input_ids : tokenized gt_data
labels : masked labels (model doesn't need to predict prompt and pad token)
"""
model, processor, dataset, config, image_size, p1 = prepare_job()
sample = self.dataset[idx]
# inputs
pixel_values = processor(sample["image"], random_padding=self.split == "train",
return_tensors="pt").pixel_values
pixel_values = pixel_values.squeeze()
# targets
target_sequence = random.choice(self.gt_token_sequences[idx]) # can be more than one, e.g., DocVQA Task 1
input_ids = processor.tokenizer(
target_sequence,
add_special_tokens=False,
max_length=self.max_length,
padding="max_length",
truncation=True,
return_tensors="pt",
)["input_ids"].squeeze(0)
labels = input_ids.clone()
labels[labels == processor.tokenizer.pad_token_id] = self.ignore_id # model doesn't need to predict pad token
# labels[: torch.nonzero(labels == self.prompt_end_token_id).sum() + 1] = self.ignore_id # model doesn't need to predict prompt (for VQA)
return pixel_values, labels, target_sequence
def build_data_loaders():
print("Building data loaders...")
model, processor, dataset, config, image_size, max_length = prepare_job()
# we update some settings which differ from pretraining; namely the size of the images + no rotation required
# source: https://github.com/clovaai/donut/blob/master/config/train_cord.yaml
processor.feature_extractor.size = image_size[::-1] # should be (width, height)
processor.feature_extractor.do_align_long_axis = False
train_dataset = DonutDataset(dataset_name, max_length=max_length,
split="train", task_start_token="<s_cord-v2>", prompt_end_token="<s_cord-v2>",
sort_json_key=False, # cord dataset is preprocessed, so no need for this
)
val_dataset = DonutDataset(dataset_name, max_length=max_length,
split="validation", task_start_token="<s_cord-v2>", prompt_end_token="<s_cord-v2>",
sort_json_key=False, # cord dataset is preprocessed, so no need for this
)
model.config.pad_token_id = processor.tokenizer.pad_token_id
model.config.decoder_start_token_id = processor.tokenizer.convert_tokens_to_ids(['<s_cord-v2>'])[0]
# feel free to increase the batch size if you have a lot of memory
# I'm fine-tuning on Colab and given the large image size, batch size > 1 is not feasible
# Set num_workers=4
train_dataloader = DataLoader(train_dataset, batch_size=1, shuffle=True, num_workers=4)
val_dataloader = DataLoader(val_dataset, batch_size=1, shuffle=False, num_workers=4)
return train_dataloader, val_dataloader, max_length
class DonutModelPLModule(pl.LightningModule):
def __init__(self, config, processor, model):
super().__init__()
self.config = config
self.processor = processor
self.model = model
self.train_dataloader, self.val_dataloader, self.max_length = build_data_loaders()
def training_step(self, batch, batch_idx):
pixel_values, labels, _ = batch
outputs = self.model(pixel_values, labels=labels)
loss = outputs.loss
self.log_dict({"train_loss": loss}, sync_dist=True)
return loss
def validation_step(self, batch, batch_idx, dataset_idx=0):
pixel_values, labels, answers = batch
batch_size = pixel_values.shape[0]
# we feed the prompt to the model
decoder_input_ids = torch.full((batch_size, 1), self.model.config.decoder_start_token_id, device=self.device)
outputs = self.model.generate(pixel_values,
decoder_input_ids=decoder_input_ids,
max_length=self.max_length,
early_stopping=True,
pad_token_id=self.processor.tokenizer.pad_token_id,
eos_token_id=self.processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=1,
bad_words_ids=[[self.processor.tokenizer.unk_token_id]],
return_dict_in_generate=True, )
predictions = []
for seq in self.processor.tokenizer.batch_decode(outputs.sequences):
seq = seq.replace(self.processor.tokenizer.eos_token, "").replace(self.processor.tokenizer.pad_token, "")
seq = re.sub(r"<.*?>", "", seq, count=1).strip() # remove first task start token
predictions.append(seq)
scores = list()
for pred, answer in zip(predictions, answers):
pred = re.sub(r"(?:(?<=>) | (?=</s_))", "", pred)
# NOT NEEDED ANYMORE
# answer = re.sub(r"<.*?>", "", answer, count=1)
answer = answer.replace(self.processor.tokenizer.eos_token, "")
scores.append(edit_distance(pred, answer) / max(len(pred), len(answer)))
if self.config.get("verbose", False) and len(scores) == 1:
print(f"Prediction: {pred}")
print(f" Answer: {answer}")
print(f" Normed ED: {scores[0]}")
return scores
def validation_epoch_end(self, validation_step_outputs):
# I set this to 1 manually
# (previously set to len(self.config.dataset_name_or_paths))
num_of_loaders = 1
if num_of_loaders == 1:
validation_step_outputs = [validation_step_outputs]
assert len(validation_step_outputs) == num_of_loaders
cnt = [0] * num_of_loaders
total_metric = [0] * num_of_loaders
val_metric = [0] * num_of_loaders
for i, results in enumerate(validation_step_outputs):
for scores in results:
cnt[i] += len(scores)
total_metric[i] += np.sum(scores)
val_metric[i] = total_metric[i] / cnt[i]
val_metric_name = f"val_metric_{i}th_dataset"
self.log_dict({val_metric_name: val_metric[i]}, sync_dist=True)
self.log_dict({"val_metric": np.sum(total_metric) / np.sum(cnt)}, sync_dist=True)
def configure_optimizers(self):
# TODO add scheduler
optimizer = torch.optim.Adam(self.parameters(), lr=self.config.get("lr"))
return optimizer
def train_dataloader(self):
return self.train_dataloader
def val_dataloader(self):
return self.val_dataloader
class PushToHubCallback(Callback):
def on_train_epoch_end(self, trainer, pl_module):
print(f"Pushing model to the hub, epoch {trainer.current_epoch}")
pl_module.model.push_to_hub(model_name,
commit_message=f"Training in progress, epoch {trainer.current_epoch}")
def on_train_end(self, trainer, pl_module):
print(f"Pushing model to the hub after training")
pl_module.processor.push_to_hub(model_name,
commit_message=f"Training done")
pl_module.model.push_to_hub(model_name,
commit_message=f"Training done")
def run_training_donut(max_epochs_param, val_check_interval_param, warmup_steps_param):
worker_pid = os.getpid()
print(f"Handling training request with worker PID: {worker_pid}")
start_time = time.time()
# Set epochs = 30
# Set num_training_samples_per_epoch = training set size
# Set val_check_interval = 0.4
# Set warmup_steps: 425 / 8 = 54, 54 * 10 = 540, 540 * 0.15 = 81
config_params = {"max_epochs": max_epochs_param,
"val_check_interval": val_check_interval_param, # how many times we want to validate during an epoch
"check_val_every_n_epoch": 1,
"gradient_clip_val": 1.0,
"num_training_samples_per_epoch": 425,
"lr": 3e-5,
"train_batch_sizes": [8],
"val_batch_sizes": [1],
# "seed":2022,
"num_nodes": 1,
"warmup_steps": warmup_steps_param, # 425 / 8 = 54, 54 * 10 = 540, 540 * 0.15 = 81
"result_path": "./result",
"verbose": False,
}
model, processor, dataset, config, image_size, p1 = prepare_job()
model_module = DonutModelPLModule(config, processor, model)
# wandb_logger = WandbLogger(project="sparrow", name="invoices-donut-v5")
# trainer = pl.Trainer(
# accelerator="gpu",
# devices=1,
# max_epochs=config_params.get("max_epochs"),
# val_check_interval=config_params.get("val_check_interval"),
# check_val_every_n_epoch=config_params.get("check_val_every_n_epoch"),
# gradient_clip_val=config_params.get("gradient_clip_val"),
# precision=16, # we'll use mixed precision
# num_sanity_val_steps=0,
# # logger=wandb_logger,
# callbacks=[PushToHubCallback()],
# )
# trainer.fit(model_module)
end_time = time.time()
processing_time = end_time - start_time
print(f"Training done, worker PID: {worker_pid}")
return processing_time
|