File size: 11,102 Bytes
94cb743 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import argparse
import os
import shutil
from rembg import remove
from PIL import Image
import io
def add_background(image, background, default_color="#FFFFFF"):
"""
Adds a background to an image, with a fallback to a default color if the specified background is not available.
Args:
- image (PIL.Image.Image): Image with a transparent background.
- background (str or PIL.Image.Image): Background color (as a hex code) or a PIL Image to be used as background.
- default_color (str): Fallback color if the specified background is not valid. Defaults to white.
Returns:
- PIL.Image.Image: The image with the new background.
"""
foreground = image.convert("RGBA")
if isinstance(background, str) and (background.startswith("#") or background.isalpha()):
# Background is a color
try:
Image.new("RGBA", (1, 1), background) # Test if valid color
background_layer = Image.new("RGBA", foreground.size, background)
except ValueError:
print(
f"Invalid color '{background}'. Using default color '{default_color}'.")
background_layer = Image.new(
"RGBA", foreground.size, default_color)
elif isinstance(background, Image.Image):
# Background is an image
bg_img = background.convert("RGBA")
background_layer = bg_img.resize(foreground.size)
else:
# Fallback to default color
background_layer = Image.new("RGBA", foreground.size, default_color)
final_img = Image.alpha_composite(
background_layer, foreground).convert("RGB")
return final_img
def autocrop_image(image):
"""
Autocrops an image, focusing on the non-transparent pixels.
Args:
- image (PIL.Image.Image): Image to be autocropped.
Returns:
- PIL.Image.Image: The autocropped image.
"""
bbox = image.getbbox()
if bbox:
return image.crop(bbox)
return image
def remove_bg_func(image):
"""
Removes the background from an image using the rembg library.
Args:
- image (PIL.Image.Image): Image object from which to remove the background.
Returns:
- PIL.Image.Image: New image object with the background removed.
"""
# Convert the PIL Image to bytes
img_byte_arr = io.BytesIO()
image.save(img_byte_arr, format='PNG')
img_byte_arr = img_byte_arr.getvalue()
# Use rembg to remove the background
result_bytes = remove(img_byte_arr)
# Convert the result bytes back to a PIL Image
result_image = Image.open(io.BytesIO(result_bytes))
return result_image
def process_image(image_data, crop=False, remove_bg=False, resize=None, padding=0, background=None):
"""
Processes a single image based on the provided options.
Args:
- image_data (PIL.Image.Image): The input image.
- crop (bool): Whether to autocrop the image.
- remove_bg (bool): Whether to remove the background of the image.
- resize (tuple): Optional dimensions (width, height) to resize the image.
- padding (int): Number of padding pixels to add around the image.
- background (str): Optional background color (hex code or name) or path to an image file to set as the background.
Returns:
- PIL.Image.Image: The processed image.
"""
# Assume image_data is a PIL.Image.Image object
if remove_bg:
# Assuming remove_bg function returns a PIL image
image_data = remove_bg_func(image_data)
if crop:
# Assuming autocrop_image function modifies the image in place or returns a new PIL image
image_data = autocrop_image(image_data)
if resize:
# Assuming resize_and_pad_image function modifies the image in place or returns a new PIL image
image_data = resize_and_pad_image(image_data, resize, padding)
if background:
# Assuming add_background function modifies the image in place or returns a new PIL image
image_data = add_background(image_data, background)
return image_data
def resize_and_pad_image(image, dimensions, padding=0):
"""
Resizes an image to fit the specified dimensions and adds padding.
Args:
- image (PIL.Image.Image): Image object to be resized and padded.
- dimensions (tuple): Target dimensions (width, height).
- padding (int): Padding to add around the resized image.
Returns:
- PIL.Image.Image: Resized and padded image object.
"""
target_width, target_height = dimensions
content_width, content_height = target_width - \
2*padding, target_height - 2*padding
# Determine new size, preserving aspect ratio
img_ratio = image.width / image.height
target_ratio = content_width / content_height
if target_ratio > img_ratio:
new_height = content_height
new_width = int(new_height * img_ratio)
else:
new_width = content_width
new_height = int(new_width / img_ratio)
# Resize the image
resized_img = image.resize(
(new_width, new_height), Image.Resampling.LANCZOS)
# Create a new image with the target dimensions and a transparent background
new_img = Image.new(
"RGBA", (target_width, target_height), (255, 255, 255, 0))
# Calculate the position to paste the resized image to center it
paste_position = ((target_width - new_width) // 2,
(target_height - new_height) // 2)
# Paste the resized image onto the new image, centered
new_img.paste(resized_img, paste_position,
resized_img if resized_img.mode == 'RGBA' else None)
return new_img
def generate_output_filename(input_path, remove_bg=False, crop=False, resize=None, background=None):
"""
Generates an output filename based on the input path and processing options applied.
Appends specific suffixes based on the operations: '_b' for background removal, '_c' for crop,
and '_bg' if a background is added. It ensures the file extension is '.png'.
Args:
- input_path (str): Path to the input image.
- remove_bg (bool): Indicates if background removal was applied.
- crop (bool): Indicates if autocrop was applied.
- resize (tuple): Optional dimensions (width, height) for resizing the image.
- background (str): Indicates if a background was added (None if not used).
Returns:
- (str): Modified filename with appropriate suffix and '.png' extension.
"""
base, _ = os.path.splitext(os.path.basename(input_path))
suffix = ""
if remove_bg:
suffix += "_b"
if crop:
suffix += "_c"
if resize:
width, height = resize
suffix += f"_{width}x{height}"
if background:
suffix += "_bg" # Append "_bg" if the background option was used
# Ensure the file saves as PNG, accommodating for transparency or added backgrounds
return f"{base}{suffix}.png"
# The main and process_images functions remain the same, but ensure to update them to handle the new PNG output correctly.
# Update the process_images and main functions to include the new autocrop functionality
# Ensure to pass the crop argument to process_image and adjust the output filename generation accordingly
def process_images2(input_dir="./input", output_dir="./output", crop=False, remove_bg=False, resize=None, padding=0, background=None):
"""
Processes images in the specified directory based on the provided options.
Args:
- input_dir (str): Directory containing the images to be processed.
- output_dir (str): Directory where processed images will be saved.
- crop (bool): Whether to crop the images.
- remove_bg (bool): Whether to remove the background of the images.
- resize (tuple): Optional dimensions (width, height) to resize the image.
- padding (int): Number of padding pixels to add around the image.
- background (str): Optional background color (hex code or name) or path to an image file to set as the background.
"""
processed_input_dir = os.path.join(input_dir, "processed")
os.makedirs(processed_input_dir, exist_ok=True)
os.makedirs(output_dir, exist_ok=True)
inputs = [os.path.join(input_dir, f) for f in os.listdir(
input_dir) if os.path.isfile(os.path.join(input_dir, f))]
# if images are not in the input directory, print a message and return
if not inputs:
print("No images found in the input directory.")
return
for i, input_path in enumerate(inputs, start=1):
filename = os.path.basename(input_path)
output_filename = generate_output_filename(
input_path, remove_bg=remove_bg, crop=crop, resize=resize, background=background)
output_path = os.path.join(output_dir, output_filename)
print(f"Processing image {i}/{len(inputs)}...{filename}")
# Update the call to process_image with all parameters including background
process_image(input_path, output_path, crop=crop, remove_bg=remove_bg,
resize=resize, padding=padding, background=background)
shutil.move(input_path, os.path.join(processed_input_dir, filename))
print("All images have been processed.")
def process_images(input_dir="./input", output_dir="./output", crop=False, remove_bg=False, resize=None, padding=0, background=None):
"""
Processes images in the specified directory based on the provided options.
"""
processed_input_dir = os.path.join(input_dir, "processed")
os.makedirs(processed_input_dir, exist_ok=True)
os.makedirs(output_dir, exist_ok=True)
inputs = [os.path.join(input_dir, f) for f in os.listdir(
input_dir) if os.path.isfile(os.path.join(input_dir, f))]
if not inputs:
print("No images found in the input directory.")
return
for i, input_path in enumerate(inputs, start=1):
try:
with Image.open(input_path) as img:
# Define filename here, before it's used
filename = os.path.basename(input_path)
# Process the image
processed_img = process_image(
img, crop=crop, remove_bg=remove_bg, resize=resize, padding=padding, background=background)
# Generate output filename based on processing parameters
output_filename = generate_output_filename(
filename, remove_bg=remove_bg, crop=crop, resize=resize, background=background)
output_path = os.path.join(output_dir, output_filename)
# Save the processed image to the output directory
processed_img.save(output_path)
print(
f"Processed image {i}/{len(inputs)}: {filename} -> {output_filename}")
# Optionally move the processed input image to a "processed" subdirectory
shutil.move(input_path, os.path.join(
processed_input_dir, filename))
except Exception as e:
print(f"Error processing image {input_path}: {e}")
print("All images have been processed.") |