File size: 4,154 Bytes
ed16792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import gradio as gr
import random


def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, 100000000)
    return seed


examples = [[
    "condition/example/t2i/multigen/sofa.png",
    "The red sofa in the living room has several pillows on it", "(512, 512)"
],
            [
                "condition/example/t2i/multigen/house.jpg",
                "A brick house with a chimney under a starry sky.",
                "(512, 512)"
            ],
            [
                "condition/example/t2i/multi_resolution/car.jpg",
                "a sport car", "(448, 768)"
            ]]


def create_demo(process):
    with gr.Blocks() as demo:
        with gr.Row():
            with gr.Column():
                image = gr.Image()
                prompt = gr.Textbox(label="Prompt")
                run_button = gr.Button("Run")
                with gr.Accordion("Advanced options", open=False):
                    cfg_scale = gr.Slider(label="Guidance scale",
                                          minimum=0.1,
                                          maximum=30.0,
                                          value=2,
                                          step=0.1)
                    resolution = gr.Slider(label="(H, W)",
                                           minimum=384,
                                           maximum=768,
                                           value=512,
                                           step=16)
                    top_k = gr.Slider(minimum=1,
                                      maximum=16384,
                                      step=1,
                                      value=2000,
                                      label='Top-K')
                    top_p = gr.Slider(minimum=0.,
                                      maximum=1.0,
                                      step=0.1,
                                      value=1.0,
                                      label="Top-P")
                    temperature = gr.Slider(minimum=0.,
                                            maximum=1.0,
                                            step=0.1,
                                            value=1.0,
                                            label='Temperature')
                    seed = gr.Slider(label="Seed",
                                     minimum=0,
                                     maximum=100000000,
                                     step=1,
                                     value=0)
                    randomize_seed = gr.Checkbox(label="Randomize seed",
                                                 value=True)
            with gr.Column():
                result = gr.Gallery(label="Output",
                                    show_label=False,
                                    height='800px',
                                    columns=2,
                                    object_fit="scale-down")
        gr.Examples(
            examples=examples,
            inputs=[
                image,
                prompt,
                resolution,
            ]
        )
        inputs = [
            image,
            prompt,
            cfg_scale,
            temperature,
            top_k,
            top_p,
            seed,
        ]
        prompt.submit(
            fn=randomize_seed_fn,
            inputs=[seed, randomize_seed],
            outputs=seed,
            queue=False,
            api_name=False,
        ).then(
            fn=process,
            inputs=inputs,
            outputs=result,
            api_name=False,
        )
        run_button.click(
            fn=randomize_seed_fn,
            inputs=[seed, randomize_seed],
            outputs=seed,
            queue=False,
            api_name=False,
        ).then(
            fn=process,
            inputs=inputs,
            outputs=result,
            api_name="canny",
        )
    return demo


if __name__ == "__main__":
    from model import Model
    model = Model()
    demo = create_demo(model.process_depth)
    demo.queue().launch(share=False, server_name="0.0.0.0")