File size: 8,430 Bytes
2422035
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import torch.distributed as dist
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.distributed import DistributedSampler
from torchvision.datasets import ImageFolder
from torchvision import transforms
from tqdm import tqdm
import os
from PIL import Image
import numpy as np
import itertools
import argparse
import random

from skimage.metrics import peak_signal_noise_ratio as psnr_loss
from skimage.metrics import structural_similarity as ssim_loss
from omegaconf import OmegaConf
from tokenizer.vqgan.model import VQModel
from tokenizer.vqgan.model import VQGAN_FROM_TAMING


class SingleFolderDataset(Dataset):
    def __init__(self, directory, transform=None):
        super().__init__()
        self.directory = directory
        self.transform = transform
        self.image_paths = [os.path.join(directory, file_name) for file_name in os.listdir(directory)
                            if os.path.isfile(os.path.join(directory, file_name))]

    def __len__(self):
        return len(self.image_paths)

    def __getitem__(self, idx):
        image_path = self.image_paths[idx]
        image = Image.open(image_path).convert('RGB')
        if self.transform:
            image = self.transform(image)
        return image, torch.tensor(0)


def create_npz_from_sample_folder(sample_dir, num=50_000):
    """
    Builds a single .npz file from a folder of .png samples.
    """
    samples = []
    for i in tqdm(range(num), desc="Building .npz file from samples"):
        sample_pil = Image.open(f"{sample_dir}/{i:06d}.png")
        sample_np = np.asarray(sample_pil).astype(np.uint8)
        samples.append(sample_np)

    random.shuffle(samples) # This is very important for IS(Inception Score) !!!
    samples = np.stack(samples)
    assert samples.shape == (num, samples.shape[1], samples.shape[2], 3)
    npz_path = f"{sample_dir}.npz"
    np.savez(npz_path, arr_0=samples)
    print(f"Saved .npz file to {npz_path} [shape={samples.shape}].")
    return npz_path


def center_crop_arr(pil_image, image_size):
    """
    Center cropping implementation from ADM.
    https://github.com/openai/guided-diffusion/blob/8fb3ad9197f16bbc40620447b2742e13458d2831/guided_diffusion/image_datasets.py#L126
    """
    while min(*pil_image.size) >= 2 * image_size:
        pil_image = pil_image.resize(
            tuple(x // 2 for x in pil_image.size), resample=Image.BOX
        )

    scale = image_size / min(*pil_image.size)
    pil_image = pil_image.resize(
        tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
    )

    arr = np.array(pil_image)
    crop_y = (arr.shape[0] - image_size) // 2
    crop_x = (arr.shape[1] - image_size) // 2
    return Image.fromarray(arr[crop_y: crop_y + image_size, crop_x: crop_x + image_size])


def main(args):
    # Setup PyTorch:
    assert torch.cuda.is_available(), "Sampling with DDP requires at least one GPU. sample.py supports CPU-only usage"
    torch.set_grad_enabled(False)

    # Setup DDP:
    dist.init_process_group("nccl")
    rank = dist.get_rank()
    device = rank % torch.cuda.device_count()
    seed = args.global_seed * dist.get_world_size() + rank
    torch.manual_seed(seed)
    torch.cuda.set_device(device)
    print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")

    # create and load vqgan
    cfg, ckpt = VQGAN_FROM_TAMING[args.vqgan]
    config = OmegaConf.load(cfg)
    vq_model = VQModel(**config.model.get("params", dict())).to(device)
    vq_model.init_from_ckpt(ckpt, logging=False)
    vq_model.eval()

    # Create folder to save samples:
    folder_name = f"{args.vqgan}-{args.dataset}-size-{args.image_size}-seed-{args.global_seed}"
    sample_folder_dir = f"{args.sample_dir}/{folder_name}"
    if rank == 0:
        os.makedirs(sample_folder_dir, exist_ok=True)
        print(f"Saving .png samples at {sample_folder_dir}")
    dist.barrier()

    # Setup data:
    transform = transforms.Compose([
        transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, args.image_size)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
    ])

    if args.dataset == 'imagenet':
        dataset = ImageFolder(args.data_path, transform=transform)
        num_fid_samples = 50000
    elif args.dataset == 'coco':
        dataset = SingleFolderDataset(args.data_path, transform=transform)
        num_fid_samples = 5000
    else:
        raise Exception("please check dataset")
    
    sampler = DistributedSampler(
        dataset,
        num_replicas=dist.get_world_size(),
        rank=rank,
        shuffle=False,
        seed=args.global_seed
    )
    loader = DataLoader(
        dataset,
        batch_size=args.per_proc_batch_size,
        shuffle=False,
        sampler=sampler,
        num_workers=args.num_workers,
        pin_memory=True,
        drop_last=False
    )    

    # Figure out how many samples we need to generate on each GPU and how many iterations we need to run:
    n = args.per_proc_batch_size
    global_batch_size = n * dist.get_world_size()
    
    psnr_val_rgb = []
    ssim_val_rgb = []
    loader = tqdm(loader) if rank == 0 else loader
    total = 0
    for x, _ in loader:
        rgb_gts = x
        rgb_gts = (rgb_gts.permute(0, 2, 3, 1).to("cpu").numpy() + 1.0) / 2.0 # rgb_gt value is between [0, 1]
        x = x.to(device)
        with torch.no_grad():
            latent, _, [_, _, indices] = vq_model.encode(x)
            samples = vq_model.decode_code(indices, latent.shape) # output value is between [-1, 1]
        samples = torch.clamp(127.5 * samples + 128.0, 0, 255).permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy()
        
        # Save samples to disk as individual .png files
        for i, (sample, rgb_gt) in enumerate(zip(samples, rgb_gts)):
            index = i * dist.get_world_size() + rank + total
            Image.fromarray(sample).save(f"{sample_folder_dir}/{index:06d}.png")
            # metric
            rgb_restored = sample.astype(np.float32) / 255. # rgb_restored value is between [0, 1]
            psnr = psnr_loss(rgb_restored, rgb_gt)
            ssim = ssim_loss(rgb_restored, rgb_gt, multichannel=True, data_range=2.0, channel_axis=-1)
            psnr_val_rgb.append(psnr)
            ssim_val_rgb.append(ssim)
        total += global_batch_size

    # ------------------------------------
    #       Summary
    # ------------------------------------
    # Make sure all processes have finished saving their samples
    dist.barrier()
    world_size = dist.get_world_size()
    gather_psnr_val = [None for _ in range(world_size)]
    gather_ssim_val = [None for _ in range(world_size)]
    dist.all_gather_object(gather_psnr_val, psnr_val_rgb)
    dist.all_gather_object(gather_ssim_val, ssim_val_rgb)

    if rank == 0:
        gather_psnr_val = list(itertools.chain(*gather_psnr_val))
        gather_ssim_val = list(itertools.chain(*gather_ssim_val))        
        psnr_val_rgb = sum(gather_psnr_val) / len(gather_psnr_val)
        ssim_val_rgb = sum(gather_ssim_val) / len(gather_ssim_val)
        print("PSNR: %f, SSIM: %f " % (psnr_val_rgb, ssim_val_rgb))

        result_file = f"{sample_folder_dir}_results.txt"
        print("writing results to {}".format(result_file))
        with open(result_file, 'w') as f:
            print("PSNR: %f, SSIM: %f " % (psnr_val_rgb, ssim_val_rgb), file=f)

        create_npz_from_sample_folder(sample_folder_dir, num_fid_samples)
        print("Done.")
    
    dist.barrier()
    dist.destroy_process_group()


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--data-path", type=str, required=True)
    parser.add_argument("--dataset", type=str, choices=['imagenet', 'coco'], default='imagenet')
    parser.add_argument("--vqgan", type=str, choices=list(VQGAN_FROM_TAMING.keys()), default="vqgan_imagenet_f16_16384")
    parser.add_argument("--image-size", type=int, choices=[256, 512], default=256)
    parser.add_argument("--sample-dir", type=str, default="reconstructions")
    parser.add_argument("--per-proc-batch-size", type=int, default=32)
    parser.add_argument("--global-seed", type=int, default=0)
    parser.add_argument("--num-workers", type=int, default=4)
    args = parser.parse_args()
    main(args)