Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,430 Bytes
2422035 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import torch.distributed as dist
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.distributed import DistributedSampler
from torchvision.datasets import ImageFolder
from torchvision import transforms
from tqdm import tqdm
import os
from PIL import Image
import numpy as np
import itertools
import argparse
import random
from skimage.metrics import peak_signal_noise_ratio as psnr_loss
from skimage.metrics import structural_similarity as ssim_loss
from omegaconf import OmegaConf
from tokenizer.vqgan.model import VQModel
from tokenizer.vqgan.model import VQGAN_FROM_TAMING
class SingleFolderDataset(Dataset):
def __init__(self, directory, transform=None):
super().__init__()
self.directory = directory
self.transform = transform
self.image_paths = [os.path.join(directory, file_name) for file_name in os.listdir(directory)
if os.path.isfile(os.path.join(directory, file_name))]
def __len__(self):
return len(self.image_paths)
def __getitem__(self, idx):
image_path = self.image_paths[idx]
image = Image.open(image_path).convert('RGB')
if self.transform:
image = self.transform(image)
return image, torch.tensor(0)
def create_npz_from_sample_folder(sample_dir, num=50_000):
"""
Builds a single .npz file from a folder of .png samples.
"""
samples = []
for i in tqdm(range(num), desc="Building .npz file from samples"):
sample_pil = Image.open(f"{sample_dir}/{i:06d}.png")
sample_np = np.asarray(sample_pil).astype(np.uint8)
samples.append(sample_np)
random.shuffle(samples) # This is very important for IS(Inception Score) !!!
samples = np.stack(samples)
assert samples.shape == (num, samples.shape[1], samples.shape[2], 3)
npz_path = f"{sample_dir}.npz"
np.savez(npz_path, arr_0=samples)
print(f"Saved .npz file to {npz_path} [shape={samples.shape}].")
return npz_path
def center_crop_arr(pil_image, image_size):
"""
Center cropping implementation from ADM.
https://github.com/openai/guided-diffusion/blob/8fb3ad9197f16bbc40620447b2742e13458d2831/guided_diffusion/image_datasets.py#L126
"""
while min(*pil_image.size) >= 2 * image_size:
pil_image = pil_image.resize(
tuple(x // 2 for x in pil_image.size), resample=Image.BOX
)
scale = image_size / min(*pil_image.size)
pil_image = pil_image.resize(
tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
)
arr = np.array(pil_image)
crop_y = (arr.shape[0] - image_size) // 2
crop_x = (arr.shape[1] - image_size) // 2
return Image.fromarray(arr[crop_y: crop_y + image_size, crop_x: crop_x + image_size])
def main(args):
# Setup PyTorch:
assert torch.cuda.is_available(), "Sampling with DDP requires at least one GPU. sample.py supports CPU-only usage"
torch.set_grad_enabled(False)
# Setup DDP:
dist.init_process_group("nccl")
rank = dist.get_rank()
device = rank % torch.cuda.device_count()
seed = args.global_seed * dist.get_world_size() + rank
torch.manual_seed(seed)
torch.cuda.set_device(device)
print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
# create and load vqgan
cfg, ckpt = VQGAN_FROM_TAMING[args.vqgan]
config = OmegaConf.load(cfg)
vq_model = VQModel(**config.model.get("params", dict())).to(device)
vq_model.init_from_ckpt(ckpt, logging=False)
vq_model.eval()
# Create folder to save samples:
folder_name = f"{args.vqgan}-{args.dataset}-size-{args.image_size}-seed-{args.global_seed}"
sample_folder_dir = f"{args.sample_dir}/{folder_name}"
if rank == 0:
os.makedirs(sample_folder_dir, exist_ok=True)
print(f"Saving .png samples at {sample_folder_dir}")
dist.barrier()
# Setup data:
transform = transforms.Compose([
transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, args.image_size)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
])
if args.dataset == 'imagenet':
dataset = ImageFolder(args.data_path, transform=transform)
num_fid_samples = 50000
elif args.dataset == 'coco':
dataset = SingleFolderDataset(args.data_path, transform=transform)
num_fid_samples = 5000
else:
raise Exception("please check dataset")
sampler = DistributedSampler(
dataset,
num_replicas=dist.get_world_size(),
rank=rank,
shuffle=False,
seed=args.global_seed
)
loader = DataLoader(
dataset,
batch_size=args.per_proc_batch_size,
shuffle=False,
sampler=sampler,
num_workers=args.num_workers,
pin_memory=True,
drop_last=False
)
# Figure out how many samples we need to generate on each GPU and how many iterations we need to run:
n = args.per_proc_batch_size
global_batch_size = n * dist.get_world_size()
psnr_val_rgb = []
ssim_val_rgb = []
loader = tqdm(loader) if rank == 0 else loader
total = 0
for x, _ in loader:
rgb_gts = x
rgb_gts = (rgb_gts.permute(0, 2, 3, 1).to("cpu").numpy() + 1.0) / 2.0 # rgb_gt value is between [0, 1]
x = x.to(device)
with torch.no_grad():
latent, _, [_, _, indices] = vq_model.encode(x)
samples = vq_model.decode_code(indices, latent.shape) # output value is between [-1, 1]
samples = torch.clamp(127.5 * samples + 128.0, 0, 255).permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy()
# Save samples to disk as individual .png files
for i, (sample, rgb_gt) in enumerate(zip(samples, rgb_gts)):
index = i * dist.get_world_size() + rank + total
Image.fromarray(sample).save(f"{sample_folder_dir}/{index:06d}.png")
# metric
rgb_restored = sample.astype(np.float32) / 255. # rgb_restored value is between [0, 1]
psnr = psnr_loss(rgb_restored, rgb_gt)
ssim = ssim_loss(rgb_restored, rgb_gt, multichannel=True, data_range=2.0, channel_axis=-1)
psnr_val_rgb.append(psnr)
ssim_val_rgb.append(ssim)
total += global_batch_size
# ------------------------------------
# Summary
# ------------------------------------
# Make sure all processes have finished saving their samples
dist.barrier()
world_size = dist.get_world_size()
gather_psnr_val = [None for _ in range(world_size)]
gather_ssim_val = [None for _ in range(world_size)]
dist.all_gather_object(gather_psnr_val, psnr_val_rgb)
dist.all_gather_object(gather_ssim_val, ssim_val_rgb)
if rank == 0:
gather_psnr_val = list(itertools.chain(*gather_psnr_val))
gather_ssim_val = list(itertools.chain(*gather_ssim_val))
psnr_val_rgb = sum(gather_psnr_val) / len(gather_psnr_val)
ssim_val_rgb = sum(gather_ssim_val) / len(gather_ssim_val)
print("PSNR: %f, SSIM: %f " % (psnr_val_rgb, ssim_val_rgb))
result_file = f"{sample_folder_dir}_results.txt"
print("writing results to {}".format(result_file))
with open(result_file, 'w') as f:
print("PSNR: %f, SSIM: %f " % (psnr_val_rgb, ssim_val_rgb), file=f)
create_npz_from_sample_folder(sample_folder_dir, num_fid_samples)
print("Done.")
dist.barrier()
dist.destroy_process_group()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--data-path", type=str, required=True)
parser.add_argument("--dataset", type=str, choices=['imagenet', 'coco'], default='imagenet')
parser.add_argument("--vqgan", type=str, choices=list(VQGAN_FROM_TAMING.keys()), default="vqgan_imagenet_f16_16384")
parser.add_argument("--image-size", type=int, choices=[256, 512], default=256)
parser.add_argument("--sample-dir", type=str, default="reconstructions")
parser.add_argument("--per-proc-batch-size", type=int, default=32)
parser.add_argument("--global-seed", type=int, default=0)
parser.add_argument("--num-workers", type=int, default=4)
args = parser.parse_args()
main(args) |