Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,788 Bytes
2422035 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
# Modified from:
# DiT: https://github.com/facebookresearch/DiT/blob/main/sample_ddp.py
import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import torch.nn.functional as F
import torch.distributed as dist
from tqdm import tqdm
import os
from PIL import Image
import numpy as np
import math
import argparse
from tokenizer.tokenizer_image.vq_model import VQ_models
from autoregressive.models.gpt import GPT_models
from autoregressive.models.generate import generate
def create_npz_from_sample_folder(sample_dir, num=50_000):
"""
Builds a single .npz file from a folder of .png samples.
"""
samples = []
for i in tqdm(range(num), desc="Building .npz file from samples"):
sample_pil = Image.open(f"{sample_dir}/{i:06d}.png")
sample_np = np.asarray(sample_pil).astype(np.uint8)
samples.append(sample_np)
samples = np.stack(samples)
assert samples.shape == (num, samples.shape[1], samples.shape[2], 3)
npz_path = f"{sample_dir}.npz"
np.savez(npz_path, arr_0=samples)
print(f"Saved .npz file to {npz_path} [shape={samples.shape}].")
return npz_path
def main(args):
# Setup PyTorch:
assert torch.cuda.is_available(), "Sampling with DDP requires at least one GPU. sample.py supports CPU-only usage"
torch.set_grad_enabled(False)
# Setup DDP:
dist.init_process_group("nccl")
rank = dist.get_rank()
device = rank % torch.cuda.device_count()
seed = args.global_seed * dist.get_world_size() + rank
torch.manual_seed(seed)
torch.cuda.set_device(device)
print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
# create and load model
vq_model = VQ_models[args.vq_model](
codebook_size=args.codebook_size,
codebook_embed_dim=args.codebook_embed_dim)
vq_model.to(device)
vq_model.eval()
checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
vq_model.load_state_dict(checkpoint["model"])
del checkpoint
# create and load gpt model
precision = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.precision]
latent_size = args.image_size // args.downsample_size
gpt_model = GPT_models[args.gpt_model](
vocab_size=args.codebook_size,
block_size=latent_size ** 2,
num_classes=args.num_classes,
cls_token_num=args.cls_token_num,
model_type=args.gpt_type,
).to(device=device, dtype=precision)
checkpoint = torch.load(args.gpt_ckpt, map_location="cpu")
if args.from_fsdp: # fsdp
model_weight = checkpoint
elif "model" in checkpoint: # ddp
model_weight = checkpoint["model"]
elif "module" in checkpoint: # deepspeed
model_weight = checkpoint["module"]
elif "state_dict" in checkpoint:
model_weight = checkpoint["state_dict"]
else:
raise Exception("please check model weight, maybe add --from-fsdp to run command")
# if 'freqs_cis' in model_weight:
# model_weight.pop('freqs_cis')
gpt_model.load_state_dict(model_weight, strict=False)
gpt_model.eval()
del checkpoint
if args.compile:
print(f"compiling the model...")
gpt_model = torch.compile(
gpt_model,
mode="reduce-overhead",
fullgraph=True
) # requires PyTorch 2.0 (optional)
else:
print(f"no model compile")
# Create folder to save samples:
model_string_name = args.gpt_model.replace("/", "-")
if args.from_fsdp:
ckpt_string_name = args.gpt_ckpt.split('/')[-2]
else:
ckpt_string_name = os.path.basename(args.gpt_ckpt).replace(".pth", "").replace(".pt", "")
folder_name = f"{model_string_name}-{ckpt_string_name}-size-{args.image_size}-size-{args.image_size_eval}-{args.vq_model}-" \
f"topk-{args.top_k}-topp-{args.top_p}-temperature-{args.temperature}-" \
f"cfg-{args.cfg_scale}-seed-{args.global_seed}"
sample_folder_dir = f"{args.sample_dir}/{folder_name}"
if rank == 0:
os.makedirs(sample_folder_dir, exist_ok=True)
print(f"Saving .png samples at {sample_folder_dir}")
dist.barrier()
# Figure out how many samples we need to generate on each GPU and how many iterations we need to run:
n = args.per_proc_batch_size
global_batch_size = n * dist.get_world_size()
# To make things evenly-divisible, we'll sample a bit more than we need and then discard the extra samples:
total_samples = int(math.ceil(args.num_fid_samples / global_batch_size) * global_batch_size)
if rank == 0:
print(f"Total number of images that will be sampled: {total_samples}")
assert total_samples % dist.get_world_size() == 0, "total_samples must be divisible by world_size"
samples_needed_this_gpu = int(total_samples // dist.get_world_size())
assert samples_needed_this_gpu % n == 0, "samples_needed_this_gpu must be divisible by the per-GPU batch size"
iterations = int(samples_needed_this_gpu // n)
pbar = range(iterations)
pbar = tqdm(pbar) if rank == 0 else pbar
total = 0
for _ in pbar:
# Sample inputs:
c_indices = torch.randint(0, args.num_classes, (n,), device=device)
qzshape = [len(c_indices), args.codebook_embed_dim, latent_size, latent_size]
index_sample = generate(
gpt_model, c_indices, latent_size ** 2,
cfg_scale=args.cfg_scale, cfg_interval=args.cfg_interval,
temperature=args.temperature, top_k=args.top_k,
top_p=args.top_p, sample_logits=True,
)
samples = vq_model.decode_code(index_sample, qzshape) # output value is between [-1, 1]
if args.image_size_eval != args.image_size:
samples = F.interpolate(samples, size=(args.image_size_eval, args.image_size_eval), mode='bicubic')
samples = torch.clamp(127.5 * samples + 128.0, 0, 255).permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy()
# Save samples to disk as individual .png files
for i, sample in enumerate(samples):
index = i * dist.get_world_size() + rank + total
Image.fromarray(sample).save(f"{sample_folder_dir}/{index:06d}.png")
total += global_batch_size
# Make sure all processes have finished saving their samples before attempting to convert to .npz
dist.barrier()
if rank == 0:
create_npz_from_sample_folder(sample_folder_dir, args.num_fid_samples)
print("Done.")
dist.barrier()
dist.destroy_process_group()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-B")
parser.add_argument("--gpt-ckpt", type=str, default=None)
parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="c2i", help="class-conditional or text-conditional")
parser.add_argument("--from-fsdp", action='store_true')
parser.add_argument("--cls-token-num", type=int, default=1, help="max token number of condition input")
parser.add_argument("--precision", type=str, default='bf16', choices=["none", "fp16", "bf16"])
parser.add_argument("--compile", action='store_true', default=True)
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for vq model")
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
parser.add_argument("--image-size", type=int, choices=[256, 384, 512], default=384)
parser.add_argument("--image-size-eval", type=int, choices=[256, 384, 512], default=256)
parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16)
parser.add_argument("--num-classes", type=int, default=1000)
parser.add_argument("--cfg-scale", type=float, default=1.5)
parser.add_argument("--cfg-interval", type=float, default=-1)
parser.add_argument("--sample-dir", type=str, default="samples")
parser.add_argument("--per-proc-batch-size", type=int, default=32)
parser.add_argument("--num-fid-samples", type=int, default=5000)
parser.add_argument("--global-seed", type=int, default=0)
parser.add_argument("--top-k", type=int, default=0,help="top-k value to sample with")
parser.add_argument("--temperature", type=float, default=1.0, help="temperature value to sample with")
parser.add_argument("--top-p", type=float, default=1.0, help="top-p value to sample with")
args = parser.parse_args()
main(args) |