File size: 5,041 Bytes
2422035
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import torch.distributed as dist
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.distributed import DistributedSampler
import numpy as np
import argparse
import os
import json

from utils.distributed import init_distributed_mode
from language.t5 import T5Embedder

CAPTION_KEY = {
    'blip': 0,
    'llava': 1,
    'llava_first': 2,
}
#################################################################################
#                             Training Helper Functions                         #
#################################################################################
class CustomDataset(Dataset):
    def __init__(self, lst_dir, start, end, caption_key, trunc_caption=False):
        img_path_list = []
        for lst_name in sorted(os.listdir(lst_dir))[start: end+1]:
            if not lst_name.endswith('.jsonl'):
                continue
            file_path = os.path.join(lst_dir, lst_name)
            with open(file_path, 'r') as file:
                for line_idx, line in enumerate(file):
                    data = json.loads(line)
                    # caption = data[caption_key]
                    caption = data['text'][CAPTION_KEY[caption_key]]
                    code_dir = file_path.split('/')[-1].split('.')[0]
                    if trunc_caption:
                        caption = caption.split('.')[0]
                    img_path_list.append((caption, code_dir, line_idx))
        self.img_path_list = img_path_list

    def __len__(self):
        return len(self.img_path_list)

    def __getitem__(self, index):
        caption, code_dir, code_name = self.img_path_list[index]
        return caption, code_dir, code_name


        
#################################################################################
#                                  Training Loop                                #
#################################################################################
def main(args):
    """
    Trains a new DiT model.
    """
    assert torch.cuda.is_available(), "Training currently requires at least one GPU."

    # Setup DDP:
    # dist.init_process_group("nccl")
    init_distributed_mode(args)
    rank = dist.get_rank()
    device = rank % torch.cuda.device_count()
    seed = args.global_seed * dist.get_world_size() + rank
    torch.manual_seed(seed)
    torch.cuda.set_device(device)
    print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")

    # Setup a feature folder:
    if rank == 0:
        os.makedirs(args.t5_path, exist_ok=True)

    # Setup data:
    print(f"Dataset is preparing...")
    dataset = CustomDataset(args.data_path, args.data_start, args.data_end, args.caption_key, args.trunc_caption)
    sampler = DistributedSampler(
        dataset,
        num_replicas=dist.get_world_size(),
        rank=rank,
        shuffle=False,
        seed=args.global_seed
    )
    loader = DataLoader(
        dataset,
        batch_size=1, # important!
        shuffle=False,
        sampler=sampler,
        num_workers=args.num_workers,
        pin_memory=True,
        drop_last=False
    )
    print(f"Dataset contains {len(dataset):,} images")

    precision = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.precision]
    assert os.path.exists(args.t5_model_path)
    t5_xxl = T5Embedder(
        device=device, 
        local_cache=True, 
        cache_dir=args.t5_model_path, 
        dir_or_name=args.t5_model_type,
        torch_dtype=precision
    )

    for caption, code_dir, code_name in loader:
        caption_embs, emb_masks = t5_xxl.get_text_embeddings(caption)
        valid_caption_embs = caption_embs[:, :emb_masks.sum()]
        x = valid_caption_embs.to(torch.float32).detach().cpu().numpy()
        os.makedirs(os.path.join(args.t5_path, code_dir[0]), exist_ok=True)
        np.save(os.path.join(args.t5_path, code_dir[0], '{}.npy'.format(code_name.item())), x)
        print(code_name.item())

    dist.destroy_process_group()


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--data-path", type=str, required=True)
    parser.add_argument("--t5-path", type=str, required=True)
    parser.add_argument("--data-start", type=int, required=True)
    parser.add_argument("--data-end", type=int, required=True)
    parser.add_argument("--caption-key", type=str, default='blip', choices=list(CAPTION_KEY.keys()))
    parser.add_argument("--trunc-caption", action='store_true', default=False)
    parser.add_argument("--t5-model-path", type=str, default='./pretrained_models/t5-ckpt')
    parser.add_argument("--t5-model-type", type=str, default='flan-t5-xl')
    parser.add_argument("--precision", type=str, default='bf16', choices=["none", "fp16", "bf16"])
    parser.add_argument("--global-seed", type=int, default=0)
    parser.add_argument("--num-workers", type=int, default=24)
    args = parser.parse_args()
    main(args)