Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,391 Bytes
2422035 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
from transformers import AutoImageProcessor, AutoModel
from PIL import Image
import requests
import torch
import torch.nn as nn
class Dinov2_Adapter(nn.Module):
def __init__(self, input_dim=1, output_dim=768, attention=False, pool=False, nheads=8, dropout=0.1, adapter_size='small', condition_type='canny'):
super(Dinov2_Adapter, self).__init__()
print(f"Choose adapter size: {adapter_size}")
print(f"condition type: {condition_type}")
self.model = AutoModel.from_pretrained(f'autoregressive/models/dinov2-{adapter_size}')
self.condition_type = condition_type
def to_patch14(self, input):
H, W = input.shape[2:]
new_H = (H // 16) * 14
new_W = (W // 16) * 14
if self.condition_type in ['canny', 'seg']:
output = torch.nn.functional.interpolate(input, size=(new_H, new_W), mode='nearest')#, align_corners=True) canny, seg
else:
output = torch.nn.functional.interpolate(input, size=(new_H, new_W), mode='bicubic', align_corners=True) # depth, lineart, hed
return output
def forward(self, x):
x = self.to_patch14(x)
x = self.model(x)
return x.last_hidden_state[:, 1:]
if __name__ == '__main__':
model = Dinov2_Adapter().cuda()
inputs = torch.randn(4,3,512,512).cuda()
outputs = model(inputs)
print(outputs.shape) |