File size: 6,950 Bytes
6fe569d
 
 
 
 
 
 
 
 
 
debceff
6fe569d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
990e81e
6fe569d
 
 
 
 
990e81e
6fe569d
 
 
 
 
 
 
 
 
 
 
ef34d5a
6fe569d
990e81e
6fe569d
 
 
 
 
990e81e
6fe569d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7a2883
 
6fe569d
 
f7a2883
 
 
 
6fe569d
 
 
 
 
 
 
f7a2883
 
6fe569d
 
f7a2883
 
 
6fe569d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb2f7b8
6fe569d
 
bb2f7b8
6fe569d
 
 
103643f
9578f50
2d3e634
6fe569d
bb2f7b8
6fe569d
 
bb2f7b8
6fe569d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
from transformers import pipeline
import base64
from langchain.chains.summarize import load_summarize_chain
from langchain.docstore.document import Document
from langchain.document_loaders.pdf import PyMuPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from PyPDF2 import PdfReader
import streamlit as st
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM
from time import sleep

# notes
# https://huggingface.co/docs/transformers/pad_truncation


# file loader and preprocessor
def file_preprocessing(file, skipfirst, skiplast):
    loader = PyMuPDFLoader(file)
    pages = loader.load_and_split()
    print("")
    print("# pages[0] ##########")
    print("")
    print(pages[0])
    print("")
    print("# pages ##########")
    print("")
    print(pages)
    # skip page(s)
    if (skipfirst == 1) & (skiplast == 0):
        del pages[0]
    elif (skipfirst == 0) & (skiplast == 1):
        del pages[-1]
    elif (skipfirst == 1) & (skiplast == 1):
        del pages[0]
        del pages[-1]
    else:
        pages = pages
    print("")
    print("# pages after loop ##########")
    print("")
    print(pages)
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1000,  # number of characters
        chunk_overlap=100,
        length_function=len,
        separators=["\n\n", "\n", " ", ""],  # default list
    )
    # https://dev.to/eteimz/understanding-langchains-recursivecharactertextsplitter-2846
    texts = text_splitter.split_documents(pages)
    final_texts = ""
    for text in texts:
        final_texts = final_texts + text.page_content
    return final_texts


def preproc_count(filepath, skipfirst, skiplast):
    input_text = file_preprocessing(filepath, skipfirst, skiplast)
    text_length = len(input_text)
    print("Preproc input word count: %s" %(text_length))
    return input_text, text_length


def postproc_count(summary):
    text_length = len(summary)
    print("Postproc summary word count: %s" %(text_length))
    return text_length


# llm pipeline
def llm_pipeline(tokenizer, base_model, input_text):
    pipe_sum = pipeline(
        "summarization",
        model=base_model,
        tokenizer=tokenizer,
        max_length=600,
        min_length=300,
        truncation=True
    )
    print("Summarizing...")
    result = pipe_sum(input_text)
    result = result[0]["summary_text"]
    return result


@st.cache_data(ttl=60*60)
# function to display the PDF
def displayPDF(file):
    with open(file, "rb") as f:
        base64_pdf = base64.b64encode(f.read()).decode("utf-8")
    # embed pdf in html
    pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></iframe>'
    # display file
    st.markdown(pdf_display, unsafe_allow_html=True)


# streamlit code
st.set_page_config(layout="wide")


def main():
    st.title("RASA: Research Article Summarization App")
    uploaded_file = st.file_uploader("Upload your PDF file", type=["pdf"])
    if uploaded_file is not None:
        st.subheader("Options")
        col1, col2, col3 = st.columns([1, 1, 2])
        with col1:
            model_names = [
                "T5-Small",
                "BART",
            ]
            selected_model = st.radio("Select a model to use:", model_names)
            if selected_model == "BART":
                checkpoint = "ccdv/lsg-bart-base-16384-pubmed"
                tokenizer = AutoTokenizer.from_pretrained(
                    checkpoint,
                    truncation=True,
                    legacy=False,
                    model_max_length=1000,
                    trust_remote_code=True, 
                    cache_dir="model_cache"
                )
                base_model = AutoModelForSeq2SeqLM.from_pretrained(
                    checkpoint, 
                    torch_dtype=torch.float32, 
                    trust_remote_code=True, 
                    cache_dir="model_cache"
                )
            else:  # default Flan T5 small
                checkpoint = "MBZUAI/LaMini-Flan-T5-77M"
                tokenizer = AutoTokenizer.from_pretrained(
                    checkpoint,
                    truncation=True,
                    legacy=False,
                    model_max_length=1000, 
                    cache_dir="model_cache"
                )
                base_model = AutoModelForSeq2SeqLM.from_pretrained(
                    checkpoint, 
                    torch_dtype=torch.float32, 
                    cache_dir="model_cache"
                )
        with col2:
            st.write("Skip any pages?")
            skipfirst = st.checkbox("Skip first page")
            skiplast = st.checkbox("Skip last page")
        with col3:
            st.write("Background information (links open in a new window)")
            st.write(
                "Model class: [BART](https://huggingface.co/docs/transformers/main/en/model_doc/bart)"
                "&nbsp;&nbsp;|&nbsp;&nbsp;Specific model: [MBZUAI/LaMini-Flan-T5-77M](https://huggingface.co/MBZUAI/LaMini-Flan-T5-77M)"
            )
            st.write(
                "Model class: [T5-Small](https://huggingface.co/docs/transformers/main/en/model_doc/t5)"
                "&nbsp;&nbsp;|&nbsp;&nbsp;Specific model: [ccdv/lsg-bart-base-16384-pubmed](https://huggingface.co/ccdv/lsg-bart-base-16384-pubmed)"
            )
        if st.button("Summarize"):
            col1, col2 = st.columns(2)
            filepath = "data/" + uploaded_file.name
            with open(filepath, "wb") as temp_file:
                temp_file.write(uploaded_file.read())
            with col1:
                input_text, preproc_text_length = preproc_count(filepath, skipfirst, skiplast)
                st.info(
                    "Uploaded PDF&nbsp;&nbsp;|&nbsp;&nbsp;Number of words: "
                    f"{preproc_text_length:,}"
                )
                pdf_viewer = displayPDF(filepath)
            with col2:
                with st.spinner("Downloading LLM..."):
                    sleep(5)
                with st.spinner("Summarizing..."):
                    summary = llm_pipeline(tokenizer, base_model, input_text)
                    postproc_text_length = postproc_count(summary)
                st.info(
                    "PDF Summary&nbsp;&nbsp;|&nbsp;&nbsp;Number of words: "
                    f"{postproc_text_length:,}"
                )
                st.success(summary)


st.markdown(
    """<style>
div[class*="stRadio"] > label > div[data-testid="stMarkdownContainer"] > p {
    font-size: 1rem;
    font-weight: 400;
}
div[class*="stMarkdown"] > div[data-testid="stMarkdownContainer"] > p {
    margin-bottom: -15px;
}
div[class*="stCheckbox"] > label {
    margin-bottom: -15px;
}
body > a {
    text-decoration: underline;
}
    </style>
    """,
    unsafe_allow_html=True,
)


if __name__ == "__main__":
    main()