File size: 1,470 Bytes
ab3a2d3
70091ec
 
17abae8
ab3a2d3
 
17abae8
70091ec
17abae8
ab3a2d3
17abae8
ab3a2d3
17abae8
 
 
 
 
 
ab3a2d3
 
17abae8
e9f9f9c
17abae8
 
ab3a2d3
17abae8
 
ab3a2d3
e9f9f9c
 
17abae8
 
ab3a2d3
17abae8
 
ab3a2d3
 
17abae8
 
 
 
 
 
 
 
ab3a2d3
 
e9f9f9c
 
70091ec
e9f9f9c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import gradio as gr
from transformers import WhisperProcessor, WhisperForConditionalGeneration
import torch
from transformers import pipeline
import spaces

BATCH_SIZE = 8
# Load the model and processor
MODEL_NAME = "TheirStory/whisper-small-xhosa"

device = 0 if torch.cuda.is_available() else "cpu"

pipe = pipeline(
    task="automatic-speech-recognition",
    model=MODEL_NAME,
    chunk_length_s=30,
    device=device,
)


@spaces.GPU
def transcribe(inputs):
    if inputs is None:
        raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")

    text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe"}, return_timestamps=True)["text"]
    return  text

demo = gr.Blocks()

file_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(type="filepath", label="Audio file"),
        # gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
    ],
    outputs="text",
    theme="huggingface",
    title="Whisper App",
    description=(
        "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper"
        f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
        " of arbitrary length."
    ),
    allow_flagging="never",
)

with demo:
    gr.TabbedInterface([file_transcribe], ["Microphone"])
# Launch the app
demo.launch()