File size: 11,938 Bytes
1596eba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fdca7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1596eba
2fdca7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1596eba
2fdca7c
 
 
 
 
 
 
 
 
1596eba
2fdca7c
 
 
 
 
 
 
 
1596eba
2fdca7c
1596eba
2fdca7c
 
 
 
 
 
 
1596eba
2fdca7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1596eba
2fdca7c
 
1596eba
2fdca7c
 
 
 
 
 
 
 
1596eba
 
35dd58a
1596eba
 
 
5231c0d
1596eba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import gradio as gr
import spaces
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, Qwen2_5_VLForConditionalGeneration
from qwen_vl_utils import process_vision_info
import torch
from PIL import Image
import subprocess
from datetime import datetime
import numpy as np
import os
from gliner import GLiNER
import json
import tempfile
import zipfile
import base64
import io

# Initialize GLiNER model
gliner_model = GLiNER.from_pretrained("knowledgator/modern-gliner-bi-large-v1.0")

DEFAULT_NER_LABELS = "person, organization, location, date, event"

# subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

# models = {
#     "Qwen/Qwen2-VL-7B-Instruct": AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval()

# }

class TextWithMetadata(list):
    def __init__(self, *args, **kwargs):
        super().__init__(*args)
        self.original_text = kwargs.get('original_text', '')
        self.entities = kwargs.get('entities', [])

def array_to_image_path(image_array):
    # Convert numpy array to PIL Image
    img = Image.fromarray(np.uint8(image_array))
    img.thumbnail((1024, 1024))
    
    # Generate a unique filename using timestamp
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    filename = f"image_{timestamp}.png"
    
    # Save the image
    img.save(filename)
    
    # Get the full path of the saved image
    full_path = os.path.abspath(filename)
    
    return full_path
    
models = {
    "Qwen/Qwen2.5-VL-7B-Instruct": Qwen2_5_VLForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", trust_remote_code=True, torch_dtype="auto").cuda().eval()

}

processors = {
    "Qwen/Qwen2.5-VL-7B-Instruct": AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", trust_remote_code=True)
}

DESCRIPTION = "This demo uses[Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct)"

kwargs = {}
kwargs['torch_dtype'] = torch.bfloat16

user_prompt = '<|user|>\n'
assistant_prompt = '<|assistant|>\n'
prompt_suffix = "<|end|>\n"

@spaces.GPU
def run_example(image, model_id="Qwen/Qwen2.5-VL-7B-Instruct", run_ner=False, ner_labels=DEFAULT_NER_LABELS):
    # First get the OCR text
    text_input = "Convert the image to text."
    
    # Print debug info about the image type
    print(f"Image type: {type(image)}")
    print(f"Image value: {image}")
    
    # Robust handling of image input
    try:
        # Handle None or empty input
        if image is None:
            raise ValueError("Image input is None")
            
        # Handle dictionary input (from API)
        if isinstance(image, dict):
            if 'data' in image and isinstance(image['data'], str) and image['data'].startswith('data:image'):
                # Extract the base64 part
                base64_data = image['data'].split(',', 1)[1]
                # Convert base64 to bytes, then to PIL Image
                image_bytes = base64.b64decode(base64_data)
                pil_image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
                # Convert to numpy array
                image = np.array(pil_image)
            else:
                raise ValueError(f"Invalid image dictionary format: {image}")
        
        # Convert string path to image if needed
        if isinstance(image, str):
            pil_image = Image.open(image).convert("RGB")
            image = np.array(pil_image)
            
        # Ensure image is a numpy array
        if not isinstance(image, np.ndarray):
            raise ValueError(f"Unsupported image type: {type(image)}")
            
        # Convert numpy array to image path
        image_path = array_to_image_path(image)
        
        model = models[model_id]
        processor = processors[model_id]
        
        prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}"
        pil_image = Image.fromarray(image).convert("RGB")
        messages = [
        {
                "role": "user",
                "content": [
                    {
                        "type": "image",
                        "image": image_path,
                    },
                    {"type": "text", "text": text_input},
                ],
            }
        ]
        
        # Preparation for inference
        text = processor.apply_chat_template(
            messages, tokenize=False, add_generation_prompt=True
        )
        image_inputs, video_inputs = process_vision_info(messages)
        inputs = processor(
            text=[text],
            images=image_inputs,
            videos=video_inputs,
            padding=True,
            return_tensors="pt",
        )
        inputs = inputs.to("cuda")
        
        # Inference: Generation of the output
        generated_ids = model.generate(**inputs, max_new_tokens=1024)
        generated_ids_trimmed = [
            out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
        ]
        output_text = processor.batch_decode(
            generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
        )
        
        ocr_text = output_text[0]
        
        # If NER is enabled, process the OCR text
        if run_ner:
            ner_results = gliner_model.predict_entities(
                ocr_text,
                ner_labels.split(","),
                threshold=0.3
            )
            
            # Create a list of tuples (text, label) for highlighting
            highlighted_text = []
            last_end = 0
            
            # Sort entities by start position
            sorted_entities = sorted(ner_results, key=lambda x: x["start"])
            
            # Process each entity and add non-entity text segments
            for entity in sorted_entities:
                # Add non-entity text before the current entity
                if last_end < entity["start"]:
                    highlighted_text.append((ocr_text[last_end:entity["start"]], None))
                
                # Add the entity text with its label
                highlighted_text.append((
                    ocr_text[entity["start"]:entity["end"]],
                    entity["label"]
                ))
                last_end = entity["end"]
            
            # Add any remaining text after the last entity
            if last_end < len(ocr_text):
                highlighted_text.append((ocr_text[last_end:], None))
            
            # Create TextWithMetadata instance with the highlighted text and metadata
            result = TextWithMetadata(highlighted_text, original_text=ocr_text, entities=ner_results)
            return result, result  # Return twice: once for display, once for state
        
        # If NER is disabled, return the text without highlighting
        result = TextWithMetadata([(ocr_text, None)], original_text=ocr_text, entities=[])
        return result, result  # Return twice: once for display, once for state
        
    except Exception as e:
        import traceback
        print(f"Error processing image: {e}")
        print(traceback.format_exc())
        # Return empty result on error
        result = TextWithMetadata([("Error processing image: " + str(e), None)], original_text="Error: " + str(e), entities=[])
        return result, result


with gr.Blocks() as demo:
    # Add state variables to store OCR results
    ocr_state = gr.State()
    
    # gr.Image("Caracal.jpg", interactive=False)
    with gr.Tab(label="Image Input", elem_classes="tabs"):
        with gr.Row():
            with gr.Column(elem_classes="input-container"):
                input_img = gr.Image(label="Input Picture", elem_classes="gr-image-input")
                model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="Qwen/Qwen2.5-VL-7B-Instruct", elem_classes="gr-dropdown")
                
                # Add NER controls
                with gr.Row():
                    ner_checkbox = gr.Checkbox(label="Run Named Entity Recognition", value=False)
                    ner_labels = gr.Textbox(
                        label="NER Labels (comma-separated)", 
                        value=DEFAULT_NER_LABELS,
                        visible=False
                    )
                
                submit_btn = gr.Button(value="Submit", elem_classes="submit-btn")
            with gr.Column(elem_classes="output-container"):
                output_text = gr.HighlightedText(label="Output Text", elem_id="output")

        # Show/hide NER labels based on checkbox
        ner_checkbox.change(
            lambda x: gr.update(visible=x),
            inputs=[ner_checkbox],
            outputs=[ner_labels]
        )
        
        # Modify the submit button click handler to update state
        submit_btn.click(
            run_example,
            inputs=[input_img, model_selector, ner_checkbox, ner_labels],
            outputs=[output_text, ocr_state]  # Add ocr_state to outputs
        )
    with gr.Row():
        filename = gr.Textbox(label="Save filename (without extension)", placeholder="Enter filename to save")
        download_btn = gr.Button("Download Image & Text", elem_classes="submit-btn")
        download_output = gr.File(label="Download")

    # Modify create_zip to use the state data
    def create_zip(image, fname, ocr_result):
        # Validate inputs
        if not fname or image is None:  # Changed the validation check
            return None
        
        try:
            # Convert numpy array to PIL Image if needed
            if isinstance(image, np.ndarray):
                image = Image.fromarray(image)
            elif not isinstance(image, Image.Image):
                return None
            
            with tempfile.TemporaryDirectory() as temp_dir:
                # Save image
                img_path = os.path.join(temp_dir, f"{fname}.png")
                image.save(img_path)
                
                # Use the OCR result from state
                original_text = ocr_result.original_text if ocr_result else ""
                entities = ocr_result.entities if ocr_result else []
                
                # Save text
                txt_path = os.path.join(temp_dir, f"{fname}.txt")
                with open(txt_path, 'w', encoding='utf-8') as f:
                    f.write(original_text)
                
                # Create JSON with text and entities
                json_data = {
                    "text": original_text,
                    "entities": entities,
                    "image_file": f"{fname}.png"
                }
                
                # Save JSON
                json_path = os.path.join(temp_dir, f"{fname}.json")
                with open(json_path, 'w', encoding='utf-8') as f:
                    json.dump(json_data, f, indent=2, ensure_ascii=False)
                
                # Create zip file
                output_dir = "downloads"
                os.makedirs(output_dir, exist_ok=True)
                zip_path = os.path.join(output_dir, f"{fname}.zip")
                
                with zipfile.ZipFile(zip_path, 'w') as zipf:
                    zipf.write(img_path, os.path.basename(img_path))
                    zipf.write(txt_path, os.path.basename(txt_path))
                    zipf.write(json_path, os.path.basename(json_path))
                
                return zip_path

        except Exception as e:
            print(f"Error creating zip: {str(e)}")
            return None

    # Update the download button click handler to include state
    download_btn.click(
        create_zip,
        inputs=[input_img, filename, ocr_state],
        outputs=[download_output]
    )

demo.queue(api_open=False)
demo.launch(debug=True)