Spaces:
Sleeping
Sleeping
File size: 4,556 Bytes
ade70cf 66c92ba d69fd19 ef3da92 39ae23a 70166d4 3f06e75 6690643 e357537 ade70cf 70166d4 ade70cf d2e31b4 6690643 05d0d72 e577f0c 05d0d72 318c115 833928a 70166d4 d256f3b beec895 05d0d72 70166d4 54fb483 70166d4 ade70cf 70166d4 ade70cf c8f76e0 70166d4 05d0d72 70166d4 05d0d72 70166d4 6172e67 3228e7b 6172e67 833928a 6172e67 70166d4 e8c8738 2046bcc 1d51385 3228e7b 6172e67 0dadbbc 6172e67 05d0d72 70166d4 6172e67 833928a 6172e67 05d0d72 6172e67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
import gradio as gr
from transformers import AutoConfig, AutoProcessor, AutoModelForCausalLM
import spaces
from PIL import Image
import subprocess
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import numpy as np
import requests
from io import BytesIO
from unittest.mock import patch
from transformers.dynamic_module_utils import get_imports
import os
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
model_dir = "medieval-data/florence2-medieval-bbox-zone-detection"
# Load the configuration
config = AutoConfig.from_pretrained(model_dir, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_dir,
trust_remote_code=True
)
processor = AutoProcessor.from_pretrained(
model_dir,
trust_remote_code=True
)
TITLE = "# [Florence-2- Medieval Manuscript Layout Parsing Demo](https://huggingface.co/medieval-data/florence2-medieval-bbox-zone-detection)"
DESCRIPTION = "The demo for Florence-2 fine-tuned on CATMuS Segmentation Dataset. This app has two models: one for line detection and one for zone detection."
# Define a color map for different labels
colormap = plt.cm.get_cmap('tab20')
@spaces.GPU
def process_image(image):
max_size = 1000
prompt = "<OD>"
# Calculate the scaling factor
original_width, original_height = image.size
scale = min(max_size / original_width, max_size / original_height)
new_width = int(original_width * scale)
new_height = int(original_height * scale)
# Resize the image
image = image.resize((new_width, new_height))
inputs = processor(text=prompt, images=image, return_tensors="pt")
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
do_sample=False,
num_beams=3
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
result = processor.post_process_generation(generated_text, task="<OD>", image_size=(image.width, image.height))
return result, image
def visualize_bboxes(result, image):
fig, ax = plt.subplots(1, figsize=(15, 15))
ax.imshow(image)
# Create a set of unique labels
unique_labels = set(result['<OD>']['labels'])
# Create a dictionary to map labels to colors
color_dict = {label: colormap(i/len(unique_labels)) for i, label in enumerate(unique_labels)}
# Add bounding boxes and labels to the plot
for bbox, label in zip(result['<OD>']['bboxes'], result['<OD>']['labels']):
x, y, width, height = bbox[0], bbox[1], bbox[2] - bbox[0], bbox[3] - bbox[1]
rect = patches.Rectangle((x, y), width, height, linewidth=2, edgecolor=color_dict[label], facecolor='none')
ax.add_patch(rect)
plt.text(x, y, label, fontsize=12, bbox=dict(facecolor=color_dict[label], alpha=0.5))
plt.axis('off')
return fig
def run_example(image):
if isinstance(image, str): # If image is a URL
response = requests.get(image)
image = Image.open(BytesIO(response.content))
elif isinstance(image, np.ndarray): # If image is a numpy array
image = Image.fromarray(image)
result, processed_image = process_image(image)
fig = visualize_bboxes(result, processed_image)
# Convert matplotlib figure to image
img_buf = BytesIO()
fig.savefig(img_buf, format='png')
img_buf.seek(0)
output_image = Image.open(img_buf)
return output_image
css = """
#output {
height: 1000px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(TITLE)
gr.Markdown(DESCRIPTION)
with gr.Tab(label="Florence-2 Image Processing"):
input_img = gr.Image(label="Input Picture", elem_id="input_img", height=300, width=300)
submit_btn = gr.Button(value="Submit")
with gr.Row():
output_img = gr.Image(label="Output Image with Bounding Boxes")
gr.Examples(
examples=[
["https://huggingface.co/datasets/CATMuS/medieval-segmentation/resolve/main/data/train/cambridge-corpus-christi-college-ms-111/page-002-of-003.jpg"],
],
inputs=[input_img],
outputs=[output_img],
fn=run_example,
cache_examples=True,
label='Try the examples below'
)
submit_btn.click(run_example, [input_img], [output_img])
demo.launch(debug=True) |