File size: 7,440 Bytes
8a6df40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import socket
import timeit
import numpy as np
from PIL import Image
from datetime import datetime
import os
import sys
from collections import OrderedDict
sys.path.append('./')
# PyTorch includes
import torch
from torch.autograd import Variable
from torchvision import transforms
import cv2


# Custom includes
from networks import deeplab_xception_transfer, graph
from dataloaders import custom_transforms as tr

#
import argparse
import torch.nn.functional as F

import warnings
warnings.filterwarnings("ignore")

label_colours = [(0,0,0)
                , (128,0,0), (255,0,0), (0,85,0), (170,0,51), (255,85,0), (0,0,85), (0,119,221), (85,85,0), (0,85,85), (85,51,0), (52,86,128), (0,128,0)
                , (0,0,255), (51,170,221), (0,255,255), (85,255,170), (170,255,85), (255,255,0), (255,170,0)]


def flip(x, dim):
    indices = [slice(None)] * x.dim()
    indices[dim] = torch.arange(x.size(dim) - 1, -1, -1,
                                dtype=torch.long, device=x.device)
    return x[tuple(indices)]

def flip_cihp(tail_list):
    '''

    :param tail_list: tail_list size is 1 x n_class x h x w
    :return:
    '''
    # tail_list = tail_list[0]
    tail_list_rev = [None] * 20
    for xx in range(14):
        tail_list_rev[xx] = tail_list[xx].unsqueeze(0)
    tail_list_rev[14] = tail_list[15].unsqueeze(0)
    tail_list_rev[15] = tail_list[14].unsqueeze(0)
    tail_list_rev[16] = tail_list[17].unsqueeze(0)
    tail_list_rev[17] = tail_list[16].unsqueeze(0)
    tail_list_rev[18] = tail_list[19].unsqueeze(0)
    tail_list_rev[19] = tail_list[18].unsqueeze(0)
    return torch.cat(tail_list_rev,dim=0)


def decode_labels(mask, num_images=1, num_classes=20):
    """Decode batch of segmentation masks.

    Args:
      mask: result of inference after taking argmax.
      num_images: number of images to decode from the batch.
      num_classes: number of classes to predict (including background).

    Returns:
      A batch with num_images RGB images of the same size as the input.
    """
    n, h, w = mask.shape
    assert (n >= num_images), 'Batch size %d should be greater or equal than number of images to save %d.' % (
    n, num_images)
    outputs = np.zeros((num_images, h, w, 3), dtype=np.uint8)
    for i in range(num_images):
        img = Image.new('RGB', (len(mask[i, 0]), len(mask[i])))
        pixels = img.load()
        for j_, j in enumerate(mask[i, :, :]):
            for k_, k in enumerate(j):
                if k < num_classes:
                    pixels[k_, j_] = label_colours[k]
        outputs[i] = np.array(img)
    return outputs

def read_img(img_path):
    _img = Image.open(img_path).convert('RGB')  # return is RGB pic
    return _img

def img_transform(img, transform=None):
    sample = {'image': img, 'label': 0}

    sample = transform(sample)
    return sample

def inference(net, img_path='', output_path='./', output_name='f', use_gpu=True):
    '''

    :param net:
    :param img_path:
    :param output_path:
    :return:
    '''
    # adj
    adj2_ = torch.from_numpy(graph.cihp2pascal_nlp_adj).float()
    adj2_test = adj2_.unsqueeze(0).unsqueeze(0).expand(1, 1, 7, 20).cuda().transpose(2, 3)

    adj1_ = Variable(torch.from_numpy(graph.preprocess_adj(graph.pascal_graph)).float())
    adj3_test = adj1_.unsqueeze(0).unsqueeze(0).expand(1, 1, 7, 7).cuda()

    cihp_adj = graph.preprocess_adj(graph.cihp_graph)
    adj3_ = Variable(torch.from_numpy(cihp_adj).float())
    adj1_test = adj3_.unsqueeze(0).unsqueeze(0).expand(1, 1, 20, 20).cuda()

    # multi-scale
    scale_list = [1, 0.5, 0.75, 1.25, 1.5, 1.75]
    img = read_img(img_path)
    testloader_list = []
    testloader_flip_list = []
    for pv in scale_list:
        composed_transforms_ts = transforms.Compose([
            tr.Scale_only_img(pv),
            tr.Normalize_xception_tf_only_img(),
            tr.ToTensor_only_img()])

        composed_transforms_ts_flip = transforms.Compose([
            tr.Scale_only_img(pv),
            tr.HorizontalFlip_only_img(),
            tr.Normalize_xception_tf_only_img(),
            tr.ToTensor_only_img()])

        testloader_list.append(img_transform(img, composed_transforms_ts))
        # print(img_transform(img, composed_transforms_ts))
        testloader_flip_list.append(img_transform(img, composed_transforms_ts_flip))
    # print(testloader_list)
    start_time = timeit.default_timer()
    # One testing epoch
    net.eval()
    # 1 0.5 0.75 1.25 1.5 1.75 ; flip:

    for iii, sample_batched in enumerate(zip(testloader_list, testloader_flip_list)):
        inputs, labels = sample_batched[0]['image'], sample_batched[0]['label']
        inputs_f, _ = sample_batched[1]['image'], sample_batched[1]['label']
        inputs = inputs.unsqueeze(0)
        inputs_f = inputs_f.unsqueeze(0)
        inputs = torch.cat((inputs, inputs_f), dim=0)
        if iii == 0:
            _, _, h, w = inputs.size()
        # assert inputs.size() == inputs_f.size()

        # Forward pass of the mini-batch
        inputs = Variable(inputs, requires_grad=False)

        with torch.no_grad():
            if use_gpu >= 0:
                inputs = inputs.cuda()
            # outputs = net.forward(inputs)
            outputs = net.forward(inputs, adj1_test.cuda(), adj3_test.cuda(), adj2_test.cuda())
            outputs = (outputs[0] + flip(flip_cihp(outputs[1]), dim=-1)) / 2
            outputs = outputs.unsqueeze(0)

            if iii > 0:
                outputs = F.upsample(outputs, size=(h, w), mode='bilinear', align_corners=True)
                outputs_final = outputs_final + outputs
            else:
                outputs_final = outputs.clone()
    ################ plot pic
    predictions = torch.max(outputs_final, 1)[1]
    results = predictions.cpu().numpy()
    vis_res = decode_labels(results)

    parsing_im = Image.fromarray(vis_res[0])
    parsing_im.save(output_path+'/{}.png'.format(output_name))
    cv2.imwrite(output_path+'/{}_gray.png'.format(output_name), results[0, :, :])

    end_time = timeit.default_timer()
    print('time used for the multi-scale image inference' + ' is :' + str(end_time - start_time))

if __name__ == '__main__':
    '''argparse begin'''
    parser = argparse.ArgumentParser()
    # parser.add_argument('--loadmodel',default=None,type=str)
    parser.add_argument('--loadmodel', default='', type=str)
    parser.add_argument('--img_path', default='', type=str)
    parser.add_argument('--output_path', default='', type=str)
    parser.add_argument('--output_name', default='', type=str)
    parser.add_argument('--use_gpu', default=1, type=int)
    opts = parser.parse_args()

    net = deeplab_xception_transfer.deeplab_xception_transfer_projection_savemem(n_classes=20,
                                                                                 hidden_layers=128,
                                                                                 source_classes=7, )
    if not opts.loadmodel == '':
        x = torch.load(opts.loadmodel)
        net.load_source_model(x)
        print('load model:', opts.loadmodel)
    else:
        print('no model load !!!!!!!!')
        raise RuntimeError('No model!!!!')

    if opts.use_gpu >0 :
        net.cuda()
        use_gpu = True
    else:
        use_gpu = False
        raise RuntimeError('must use the gpu!!!!')

    inference(net=net, img_path=opts.img_path,output_path=opts.output_path , output_name=opts.output_name, use_gpu=use_gpu)