File size: 4,278 Bytes
8c79f36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# encoding: utf-8
import numpy as np
import cv2
import os
from torch.utils.data import Dataset
from cvtransforms import *
import torch
import editdistance


class MyDataset(Dataset):
    letters = [
        " ",
        "A",
        "B",
        "C",
        "D",
        "E",
        "F",
        "G",
        "H",
        "I",
        "J",
        "K",
        "L",
        "M",
        "N",
        "O",
        "P",
        "Q",
        "R",
        "S",
        "T",
        "U",
        "V",
        "W",
        "X",
        "Y",
        "Z",
    ]

    def __init__(self, video_path, anno_path, file_list, vid_pad, txt_pad, phase):
        self.anno_path = anno_path
        self.vid_pad = vid_pad
        self.txt_pad = txt_pad
        self.phase = phase

        with open(file_list, "r") as f:
            self.videos = [
                os.path.join(video_path, line.strip()) for line in f.readlines()
            ]

        self.data = []
        for vid in self.videos:
            # items = vid.split(os.path.sep)
            items = vid.split("/")
            self.data.append((vid, items[-4], items[-1]))

    def __getitem__(self, idx):
        (vid, spk, name) = self.data[idx]
        vid = self._load_vid(vid)
        anno = self._load_anno(
            os.path.join(self.anno_path, spk, "align", name + ".align")
        )

        if self.phase == "train":
            vid = HorizontalFlip(vid)

        vid = ColorNormalize(vid)

        vid_len = vid.shape[0]
        anno_len = anno.shape[0]
        vid = self._padding(vid, self.vid_pad)
        anno = self._padding(anno, self.txt_pad)

        return {
            "vid": torch.FloatTensor(vid.transpose(3, 0, 1, 2)),
            "txt": torch.LongTensor(anno),
            "txt_len": anno_len,
            "vid_len": vid_len,
        }

    def __len__(self):
        return len(self.data)

    def _load_vid(self, p):
        files = os.listdir(p)
        files = list(filter(lambda file: file.find(".jpg") != -1, files))
        files = sorted(files, key=lambda file: int(os.path.splitext(file)[0]))
        array = [cv2.imread(os.path.join(p, file)) for file in files]
        array = list(filter(lambda im: not im is None, array))
        array = [
            cv2.resize(im, (128, 64), interpolation=cv2.INTER_LANCZOS4) for im in array
        ]
        array = np.stack(array, axis=0).astype(np.float32)
        return array

    def _load_anno(self, name):
        with open(name, "r") as f:
            lines = [line.strip().split(" ") for line in f.readlines()]
            txt = [line[2] for line in lines]
            txt = list(filter(lambda s: not s.upper() in ["SIL", "SP"], txt))
        return MyDataset.txt2arr(" ".join(txt).upper(), 1)

    def _padding(self, array, length):
        array = [array[_] for _ in range(array.shape[0])]
        size = array[0].shape
        for i in range(length - len(array)):
            array.append(np.zeros(size))
        return np.stack(array, axis=0)

    @staticmethod
    def txt2arr(txt, start):
        arr = []
        for c in list(txt):
            arr.append(MyDataset.letters.index(c) + start)
        return np.array(arr)

    @staticmethod
    def arr2txt(arr, start):
        txt = []
        for n in arr:
            if n >= start:
                txt.append(MyDataset.letters[n - start])
        return "".join(txt).strip()

    @staticmethod
    def ctc_arr2txt(arr, start):
        pre = -1
        txt = []
        for n in arr:
            if pre != n and n >= start:
                if (
                    len(txt) > 0
                    and txt[-1] == " "
                    and MyDataset.letters[n - start] == " "
                ):
                    pass
                else:
                    txt.append(MyDataset.letters[n - start])
            pre = n
        return "".join(txt).strip()

    @staticmethod
    def wer(predict, truth):
        word_pairs = [(p[0].split(" "), p[1].split(" ")) for p in zip(predict, truth)]
        wer = [1.0 * editdistance.eval(p[0], p[1]) / len(p[1]) for p in word_pairs]
        return wer

    @staticmethod
    def cer(predict, truth):
        cer = [
            1.0 * editdistance.eval(p[0], p[1]) / len(p[1]) for p in zip(predict, truth)
        ]
        return cer