File size: 5,649 Bytes
8e606bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import torch
import os
from dataset import MyDataset
import numpy as np
import cv2
import face_alignment
import streamlit as st


def get_position(size, padding=0.25):
    x = [
        0.000213256,
        0.0752622,
        0.18113,
        0.29077,
        0.393397,
        0.586856,
        0.689483,
        0.799124,
        0.904991,
        0.98004,
        0.490127,
        0.490127,
        0.490127,
        0.490127,
        0.36688,
        0.426036,
        0.490127,
        0.554217,
        0.613373,
        0.121737,
        0.187122,
        0.265825,
        0.334606,
        0.260918,
        0.182743,
        0.645647,
        0.714428,
        0.793132,
        0.858516,
        0.79751,
        0.719335,
        0.254149,
        0.340985,
        0.428858,
        0.490127,
        0.551395,
        0.639268,
        0.726104,
        0.642159,
        0.556721,
        0.490127,
        0.423532,
        0.338094,
        0.290379,
        0.428096,
        0.490127,
        0.552157,
        0.689874,
        0.553364,
        0.490127,
        0.42689,
    ]

    y = [
        0.106454,
        0.038915,
        0.0187482,
        0.0344891,
        0.0773906,
        0.0773906,
        0.0344891,
        0.0187482,
        0.038915,
        0.106454,
        0.203352,
        0.307009,
        0.409805,
        0.515625,
        0.587326,
        0.609345,
        0.628106,
        0.609345,
        0.587326,
        0.216423,
        0.178758,
        0.179852,
        0.231733,
        0.245099,
        0.244077,
        0.231733,
        0.179852,
        0.178758,
        0.216423,
        0.244077,
        0.245099,
        0.780233,
        0.745405,
        0.727388,
        0.742578,
        0.727388,
        0.745405,
        0.780233,
        0.864805,
        0.902192,
        0.909281,
        0.902192,
        0.864805,
        0.784792,
        0.778746,
        0.785343,
        0.778746,
        0.784792,
        0.824182,
        0.831803,
        0.824182,
    ]

    x, y = np.array(x), np.array(y)

    x = (x + padding) / (2 * padding + 1)
    y = (y + padding) / (2 * padding + 1)
    x = x * size
    y = y * size
    return np.array(list(zip(x, y)))


def output_video(p, txt, output_path):
    files = os.listdir(p)
    files = sorted(files, key=lambda x: int(os.path.splitext(x)[0]))

    font = cv2.FONT_HERSHEY_SIMPLEX

    for file, line in zip(files, txt):
        img = cv2.imread(os.path.join(p, file))
        h, w, _ = img.shape
        img = cv2.putText(
            img, line, (w // 8, 11 * h // 12), font, 1.2, (0, 0, 0), 3, cv2.LINE_AA
        )
        img = cv2.putText(
            img,
            line,
            (w // 8, 11 * h // 12),
            font,
            1.2,
            (255, 255, 255),
            0,
            cv2.LINE_AA,
        )
        h = h // 2
        w = w // 2
        img = cv2.resize(img, (w, h))
        cv2.imwrite(os.path.join(p, file), img)

    # create the output_videos directory if it doesn't exist
    if not os.path.exists(output_path):
        os.makedirs(output_path)

    output = os.path.join(output_path, "output.mp4")
    cmd = "ffmpeg -hide_banner -loglevel error -y -i {}/%04d.jpg -r 25 {}".format(
        p, output
    )
    os.system(cmd)


def transformation_from_points(points1, points2):
    points1 = points1.astype(np.float64)
    points2 = points2.astype(np.float64)

    c1 = np.mean(points1, axis=0)
    c2 = np.mean(points2, axis=0)
    points1 -= c1
    points2 -= c2
    s1 = np.std(points1)
    s2 = np.std(points2)
    points1 /= s1
    points2 /= s2

    U, S, Vt = np.linalg.svd(points1.T * points2)
    R = (U * Vt).T
    return np.vstack(
        [
            np.hstack(((s2 / s1) * R, c2.T - (s2 / s1) * R * c1.T)),
            np.matrix([0.0, 0.0, 1.0]),
        ]
    )


@st.cache_data(show_spinner=False, persist=True)
def load_video(file, device: str):
    video_name = file.split(".")[0]
    # create the samples directory if it doesn't exist
    if not os.path.exists(f"{video_name}_samples"):
        os.makedirs(f"{video_name}_samples")

    p = os.path.join(f"{video_name}_samples")
    output = os.path.join(f"{video_name}_samples", "%04d.jpg")
    cmd = "ffmpeg -hide_banner -loglevel error -i {} -qscale:v 2 -r 25 {}".format(
        file, output
    )
    os.system(cmd)

    files = os.listdir(p)
    files = sorted(files, key=lambda x: int(os.path.splitext(x)[0]))

    array = [cv2.imread(os.path.join(p, file)) for file in files]

    array = list(filter(lambda im: not im is None, array))

    fa = face_alignment.FaceAlignment(
        face_alignment.LandmarksType._2D, flip_input=False, device=device
    )
    points = [fa.get_landmarks(I) for I in array]

    front256 = get_position(256)
    video = []
    for point, scene in zip(points, array):
        if point is not None:
            shape = np.array(point[0])
            shape = shape[17:]
            M = transformation_from_points(np.matrix(shape), np.matrix(front256))

            img = cv2.warpAffine(scene, M[:2], (256, 256))
            (x, y) = front256[-20:].mean(0).astype(np.int32)
            w = 160 // 2
            img = img[y - w // 2 : y + w // 2, x - w : x + w, ...]
            img = cv2.resize(img, (128, 64))
            video.append(img)

    video = np.stack(video, axis=0).astype(np.float32)
    video = torch.FloatTensor(video.transpose(3, 0, 1, 2)) / 255.0

    return video, p, files


def ctc_decode(y):
    y = y.argmax(-1)
    t = y.size(0)
    result = []
    for i in range(t + 1):
        result.append(MyDataset.ctc_arr2txt(y[:i], start=1))
    return result