File size: 12,423 Bytes
6154d25 0b41097 6154d25 97d5130 6154d25 3e8a2cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import pandas as pd
from deta import Deta
import streamlit as st
st.set_page_config(page_title="Persian LLM Leaderboard", page_icon=":bar_chart:", layout="wide")
with open('.streamlit/style.css') as f:
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
st.markdown("<h1>Open Persian LLM Leaderboard</h1>", unsafe_allow_html=True)
DETA_KEY = st.secrets["DETA_KEY"]
deta = Deta(DETA_KEY)
database = deta.Base("submitted-models")
def insert_model(data): return database.put(data)
def fetch_all_models(): return database.fetch().items
def get_model_name(model): return database.get(model)
st.markdown("<br>", unsafe_allow_html=True)
tab1, tab2, tab3 = st.tabs([ "\u2001\u2001\u2001 LLM Benchmark\u2001\u2001\u2001",
"\u2001\u2001\u2001 Submit A Model\u2001\u2001\u2001",
"\u2001\u2001\u2001 About Leaderboard\u2001\u2001\u2001"])
summ_eval_metrics = ['BLEU', 'CHARF', 'TER']
qas_eval_metrics = ['F1', 'EXACT-MATCH']
mts_eval_metrics = ['CHARF', 'BLEU', 'TER']
mcq_eval_metrics = ['MC1', 'MC2']
with tab1:
c, col1, cc, col2 = st.columns([.55, 2, .3, 2], gap="small")
with col1:
eval_tasks = st.radio( "Select An Evaluation Task:",
('Text Summarization', 'Question Answering',
'Machine Translation', 'Multiple Choice QNs'),
horizontal=True)
with col2:
model_type = st.radio( "Select A Model Type:",
('All', 'Quantized', 'Pretrained',
'Fine\u2013tuned', 'Instruction\u2014tuned'),
horizontal=True)
if eval_tasks=='Text Summarization':
select_eval_metrics = st.multiselect( 'Select Multiple Evaluation Metrics:', summ_eval_metrics, ['BLEU', 'CHARF', 'TER'])
st.markdown("<br>", unsafe_allow_html=True)
summ_eval_data = { 'Type' : ['Quantized', 'Pretrained', 'Fine\u2013tuned', 'Instruction\u2014tuned'],
'Model': ['username/model1', 'username/model2', 'username/model3', 'username/model4'],
'BLEU' : [70, 60, 50, 40],
'CHARF': [40, 50, 60, 70],
'TER' : [50, 70, 40, 60]}
llm__dataframe = pd.DataFrame(summ_eval_data)
if model_type in ['Quantized', 'Pretrained', 'Fine\u2013tuned', 'Instruction\u2014tuned']:
llm__dataframe = llm__dataframe.loc[llm__dataframe['Type'] == model_type]
selected_columns = ['Model', 'Type'] + select_eval_metrics
llm__dataframe = llm__dataframe[selected_columns]
llm__dataframe['Model'] = llm__dataframe['Model'].apply(lambda x: f'https://huggingface.co/{x}')
st.checkbox("Use container width ▶️", value=True, key="use_container_width")
st.data_editor(llm__dataframe, column_config={"Model": st.column_config.LinkColumn("Model")},
hide_index=True, use_container_width=st.session_state.use_container_width, key="data_editor")
elif eval_tasks=='Question Answering':
select_eval_metrics = st.multiselect('Select Multiple Evaluation Metrics:', qas_eval_metrics, ['F1', 'EXACT-MATCH'])
st.markdown("<br>", unsafe_allow_html=True)
qas_eval_data = { 'Type' : ['Quantized', 'Pretrained', 'Fine\u2013tuned', 'Instruction\u2014tuned'],
'Model': ['username/model1', 'username/model2', 'username/model3', 'username/model4'],
'F1' : [70, 60, 50, 40],
'EXACT-MATCH': [40, 50, 60, 70]}
llm__dataframe = pd.DataFrame(qas_eval_data)
if model_type in ['Quantized', 'Pretrained', 'Fine\u2013tuned', 'Instruction\u2014tuned']:
llm__dataframe = llm__dataframe.loc[llm__dataframe['Type'] == model_type]
selected_columns = ['Model', 'Type'] + select_eval_metrics
llm__dataframe = llm__dataframe[selected_columns]
llm__dataframe['Model'] = llm__dataframe['Model'].apply(lambda x: f'https://huggingface.co/{x}')
st.checkbox("Use container width ▶️", value=True, key="use_container_width")
st.data_editor(llm__dataframe, column_config={"Model": st.column_config.LinkColumn("Model")},
hide_index=True, use_container_width=st.session_state.use_container_width, key="data_editor1")
if eval_tasks=='Machine Translation':
select_eval_metrics = st.multiselect( 'Select Multiple Evaluation Metrics:', mts_eval_metrics, ['BLEU', 'CHARF', 'TER'])
st.markdown("<br>", unsafe_allow_html=True)
mts_eval_data = { 'Type' : ['Quantized', 'Pretrained', 'Fine\u2013tuned', 'Instruction\u2014tuned'],
'Model': ['username/model1', 'username/model2', 'username/model3', 'username/model4'],
'BLEU' : [70, 60, 50, 40],
'CHARF': [40, 50, 60, 70],
'TER' : [50, 70, 40, 60]}
llm__dataframe = pd.DataFrame(mts_eval_data)
if model_type in ['Quantized', 'Pretrained', 'Fine\u2013tuned', 'Instruction\u2014tuned']:
llm__dataframe = llm__dataframe.loc[llm__dataframe['Type'] == model_type]
selected_columns = ['Model', 'Type'] + select_eval_metrics
llm__dataframe = llm__dataframe[selected_columns]
llm__dataframe['Model'] = llm__dataframe['Model'].apply(lambda x: f'https://huggingface.co/{x}')
st.checkbox("Use container width ▶️", value=True, key="use_container_width")
st.data_editor(llm__dataframe, column_config={"Model": st.column_config.LinkColumn("Model")},
hide_index=True, use_container_width=st.session_state.use_container_width, key="data_editor2")
if eval_tasks=='Multiple Choice QNs':
select_eval_metrics = st.multiselect('Select Multiple Evaluation Metrics:', mcq_eval_metrics, ['MC1', 'MC2'])
st.markdown("<br>", unsafe_allow_html=True)
mcq_eval_data = { 'Type' : ['Quantized', 'Pretrained', 'Fine\u2013tuned', 'Instruction\u2014tuned'],
'Model': ['username/model1', 'username/model2', 'username/model3', 'username/model4'],
'MC1' : [70, 60, 50, 40],
'MC2': [40, 50, 60, 70]}
llm__dataframe = pd.DataFrame(mcq_eval_data)
if model_type in ['Quantized', 'Pretrained', 'Fine\u2013tuned', 'Instruction\u2014tuned']:
llm__dataframe = llm__dataframe.loc[llm__dataframe['Type'] == model_type]
selected_columns = ['Model', 'Type'] + select_eval_metrics
llm__dataframe = llm__dataframe[selected_columns]
llm__dataframe['Model'] = llm__dataframe['Model'].apply(lambda x: f'https://huggingface.co/{x}')
st.checkbox("Use container width ▶️", value=True, key="use_container_width")
st.data_editor(llm__dataframe, column_config={"Model": st.column_config.LinkColumn("Model")},
hide_index=True, use_container_width=st.session_state.use_container_width, key="data_editor3")
with tab2:
submitted_models = pd.DataFrame(columns=['Model Name','Model HF Name', 'Model Type','Model Precision','Evaluation Tasks'])
c, col1 , col2, cc = st.columns([0.2, 1, 3, 0.2], gap="small")
with col1:
model_name = st.text_input("Enter Model Name (required):", placeholder="Enter model's short name", key="model_name")
with col2:
model_link = st.text_input("Enter Model HuggingFace Name:", placeholder="Enter model's HF Name: username/model", key="model_link")
c, col1 , col2, col3, cc = st.columns([0.2, 1, 1, 2, 0.2], gap="small")
with col1:
model_type = ['Quantized', 'Pretrained', 'Fine\u2013tuned', 'Instruction\u2014tuned']
selected_model_type = st.selectbox('Select Model Type:', (model_type))#, placeholder="Select a model type")
with col2:
model_precision = ['float32', 'float16', 'bfloat16', '8bit (LLM.int8)', '4bit (QLoRA/FP4)']
selected_model_precision = st.selectbox('Select Model Precision:', (model_precision))#, placeholder="Select a model precision")
with col3:
eval_tasks = ['All Tasks', 'Text Summarization', 'Question Answering', 'Machine Translation', 'Multiple Choice QNs']
selected_eval_tasks = st.selectbox('Select An Evaluation Task:', (eval_tasks))#, placeholder="Select an evaluation task")
st.markdown("##")
c, col1 , col2, cc = st.columns([2, 1, 1, 2], gap="small")
with col1:
def clear_text():
st.session_state["model_name"] = ""
st.session_state["model_link"] = ""
submit_button = st.button('Submit Model', key="submit")
if submit_button==True and model_name!='' and model_link!='':
response = get_model_name(model_name)
if response==None:
model_name_exist=False
input_data = {'key': model_name, 'Model Name': model_name, 'Model HF Name': model_link, 'Model Type': selected_model_type,
'Model Precision': selected_model_precision, 'Evaluation Tasks': selected_eval_tasks}
insert_model(input_data)
submitted_models = submitted_models.append(pd.DataFrame(input_data, index=[0]), ignore_index=True)
submitted_models = submitted_models[['Model Name','Model HF Name', 'Model Type','Model Precision','Evaluation Tasks']]
else: model_name_exist=True
elif submit_button==True and model_name!='' and model_link=='':
response = get_model_name(model_name)
if response==None:
model_name_exist=False
input_data = {'key': model_name, 'Model Name': model_name, 'Model HF Name': None, 'Model Type': selected_model_type,
'Model Precision': selected_model_precision, 'Evaluation Tasks': selected_eval_tasks}
insert_model(input_data)
submitted_models = submitted_models.append(pd.DataFrame(input_data, index=[0]), ignore_index=True)
submitted_models = submitted_models[['Model Name','Model HF Name', 'Model Type','Model Precision','Evaluation Tasks']]
else: model_name_exist=True
else: pass
with col2:
st.button('Clear Form', on_click=clear_text)
st.markdown("##")
c, col1 , col2 = st.columns([0.15, 3, 0.15], gap="small")
with col1:
if submit_button==True and model_name!='' and model_link!='' and model_name_exist==False:
st.success("You have submitted your model successfully", icon="")
st.data_editor(submitted_models, hide_index=True, use_container_width=st.session_state.use_container_width)
elif submit_button==True and model_name!='' and model_link=='' and model_name_exist==False:
st.warning("You have submitted your model, but the model's HuggingFace name is missing", icon="⚠️")
st.data_editor(submitted_models, hide_index=True, use_container_width=st.session_state.use_container_width)
elif submit_button==True and model_name=='' and model_link!='':
st.error("You have not submitted the required information", icon="")
elif submit_button==True and model_name=='' and model_link=='':
st.error("You have not submitted the required information", icon="")
elif submit_button==True and model_name!='' and model_link!='' and model_name_exist==True:
st.error("The model already submitted. Contact admin for help: { info@wishwork.org }", icon="")
elif submit_button==True and model_name!='' and model_link=='' and model_name_exist==True:
st.error("The model already submitted. Contact admin for help: { info@wishwork.org }", icon="")
else: pass
st.markdown("##")
c, col1 , col2 = st.columns([0.15, 3, 0.15], gap="small")
with col1:
with st.expander("Recently Submitted Models for Evaluation ⬇️"):
try:
all_submitted_models = pd.DataFrame(data=fetch_all_models())
all_submitted_models = all_submitted_models[['Model Name','Model HF Name', 'Model Type','Model Precision','Evaluation Tasks']]
st.data_editor(all_submitted_models, hide_index=True, use_container_width=st.session_state.use_container_width, key="data_editor4")
except KeyError:
st.info('There are no submitted models for evaluation at this moment 😆', icon="ℹ️")
footer="""<div class="footer"> <p class="p1">Copyright © 2023 <a text-align: center;' href="https://www.wishwork.org" target="_blank">Wish Work Inc.</a></p> </div>"""
st.markdown(footer, unsafe_allow_html=True) |