Spaces:
Paused
Paused
File size: 14,803 Bytes
6370672 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
import argparse
import json
import logging
import os
import re
import shutil
import time
from concurrent.futures import ThreadPoolExecutor
from io import BytesIO
from typing import Optional
from urllib.parse import urlparse
import layoutparser as lp
import openai
import pytesseract
import requests
from dotenv import load_dotenv
from pdf2image import convert_from_bytes
from pydantic import BaseModel, ConfigDict
from create_assistant import create_assistant
load_dotenv()
logging.basicConfig(handlers=[logging.StreamHandler()], level=logging.INFO)
logger = logging.getLogger(__name__)
class Block(BaseModel):
model_config = ConfigDict(arbitrary_types_allowed=True)
block: lp.elements.base.BaseLayoutElement
page_index: int
class CaptionedBlock(Block):
model_config = ConfigDict(arbitrary_types_allowed=True)
caption: lp.elements.base.BaseLayoutElement
def get_blocks_and_texts(layouts: list[lp.Layout]) -> tuple[list[Block], list[Block]]:
blocks = []
texts = []
for i, layout in enumerate(layouts):
for block in layout:
if block.type in ["Table", "Figure"]:
# Check if the current block overlaps with any existing block
for existing_block in blocks:
if existing_block.page_index != i:
# If the blocks are not on the same page, skip the overlap check
continue
overlap_area = existing_block.block.intersect(block).area
overlap_ratio = overlap_area / block.area
if overlap_ratio > 0.5:
# If the current block overlaps with an existing block by more than 50%
# Check which block is the "superset" block
if block.area > existing_block.block.area:
# If the current block is larger, replace the existing block with the current block
blocks.remove(existing_block)
blocks.append(Block(block=block, page_index=i))
# If the existing block is larger or equal, skip the current block
break
else:
# If the current block does not overlap significantly with any existing block, add it to the list
blocks.append(Block(block=block, page_index=i))
elif block.type == "Text":
texts.append(Block(block=block, page_index=i))
return blocks, texts
def caption_blocks(blocks: list[Block], texts: list[Block]) -> list[CaptionedBlock]:
captioned_blocks = []
# Find the closest text block to the top and bottom of the figure/table block
for block in blocks:
block_bottom_center = (
(block.block.block.x_1 + block.block.block.x_2) / 2,
block.block.block.y_2,
)
block_top_center = (
(block.block.block.x_1 + block.block.block.x_2) / 2,
block.block.block.y_1,
)
closest_text = None
closest_distance = float("inf")
for text in texts:
if text.page_index != block.page_index:
continue
text_top_center = (
(text.block.block.x_1 + text.block.block.x_2) / 2,
text.block.block.y_1,
)
text_bottom_center = (
(text.block.block.x_1 + text.block.block.x_2) / 2,
text.block.block.y_2,
)
distance_to_top = (
(block_bottom_center[0] - text_top_center[0]) ** 2
+ (block_bottom_center[1] - text_top_center[1]) ** 2
) ** 0.5
distance_to_bottom = (
(block_top_center[0] - text_bottom_center[0]) ** 2
+ (block_top_center[1] - text_bottom_center[1]) ** 2
) ** 0.5
# Reduce `distance_to_top` by 25% to bias towards picking bottom captions
distance = min(distance_to_top * 0.75, distance_to_bottom)
if distance < closest_distance:
closest_distance = distance
closest_text = text
if closest_text is not None:
captioned_blocks.append(
CaptionedBlock(
block=block.block,
caption=closest_text.block,
page_index=block.page_index,
)
)
return captioned_blocks
def combine_blocks(captioned_block, pages):
# Combine block and caption together
x_1 = min(captioned_block.block.block.x_1, captioned_block.caption.block.x_1)
y_1 = min(captioned_block.block.block.y_1, captioned_block.caption.block.y_1)
x_2 = max(captioned_block.block.block.x_2, captioned_block.caption.block.x_2)
y_2 = max(captioned_block.block.block.y_2, captioned_block.caption.block.y_2)
return pages[captioned_block.page_index].crop((x_1, y_1, x_2, y_2))
def process_captioned_block(captioned_block, pages, base_path):
combined_image = combine_blocks(captioned_block, pages)
# Convert the PIL Image object to base64
buffered = BytesIO()
combined_image.save(buffered, format="JPEG")
# Convert the PIL Image object to a string for caption
caption_image = pages[captioned_block.page_index].crop(
(
captioned_block.caption.block.x_1,
captioned_block.caption.block.y_1,
captioned_block.caption.block.x_2,
captioned_block.caption.block.y_2,
)
)
caption_text = pytesseract.image_to_string(caption_image)
figures_path = os.path.join(base_path, "figures")
os.makedirs(figures_path, exist_ok=True)
# Convert the caption text to snake case alpha numeric and truncate, then add .jpg to it
img_name = re.sub("[^0-9a-zA-Z]+", "_", caption_text)[:30] + ".jpg"
img_path = os.path.join(figures_path, img_name)
with open(img_path, "wb") as f:
f.write(buffered.getvalue())
return {"image": f"figures/{img_name}", "caption": caption_text}
def process_pdf(content: bytes, model: lp.models.Detectron2LayoutModel, base_path: str):
pages = convert_from_bytes(content)
logger.info("PDF converted to images")
with ThreadPoolExecutor(max_workers=16) as executor:
layouts = list(executor.map(model.detect, pages))
logger.info("Layout detection completed")
blocks, texts = get_blocks_and_texts(layouts)
logger.info("Blocks and texts extracted")
captioned_blocks = caption_blocks(blocks, texts)
logger.info("Captioning completed")
with ThreadPoolExecutor(max_workers=16) as executor:
results = list(
executor.map(
lambda captioned_block: process_captioned_block(
captioned_block, pages, base_path
),
captioned_blocks,
)
)
return results
def wait_on_run(run, thread, client: openai.OpenAI):
while run.status == "queued" or run.status == "in_progress":
run = client.beta.threads.runs.retrieve(
thread_id=thread.id,
run_id=run.id,
)
time.sleep(0.5)
return run
def generate_thread_content(
pdf_path: str, results: dict, client: openai.OpenAI, assistant_id: str
):
with open(pdf_path, "rb") as f:
pdf_file = client.files.create(file=f, purpose="assistants")
try:
thread = client.beta.threads.create()
message = client.beta.threads.messages.create(
thread_id=thread.id,
role="user",
content=f"{json.dumps(results)}\n\nCreate a thread for this. Your answer must be in JSON, media links should be from the local paths above.",
file_ids=[pdf_file.id],
)
run = client.beta.threads.runs.create(
thread_id=thread.id, assistant_id=assistant_id
)
run = wait_on_run(run, thread, client)
messages = client.beta.threads.messages.list(
thread_id=thread.id, order="asc", after=message.id
)
# TODO: OpenAI can return no new messages somehow (might be a bug, the run completes succesfully but no new messages are listed in the thread), catch this and throw error
if not messages.data or not messages.data[0].content:
raise ValueError("Unexpected empty response from OpenAI. Please try again.")
except Exception as e:
logger.error(f"Failed to generate thread content: {e}")
raise
finally:
# Delete uploaded PDF file
try:
client.files.delete(file_id=pdf_file.id)
except Exception as e:
logger.error(f"Failed to delete file: {e}")
# Extract JSON content from the message
message_content = messages.data[0].content[0].text.value
json_content = re.search(r"(```json\n)(.*?)(\n```)", message_content, re.DOTALL)
if json_content is None:
json_content = re.search(r"(```\n)(.*?)(\n```)", message_content, re.DOTALL)
if json_content is not None:
json_content = json_content.group(2)
try:
paper_thread = json.loads(json_content)
except (json.JSONDecodeError, TypeError):
raise ValueError(
"The thread generated by OpenAI was not in the expected JSON format."
)
return paper_thread
def process_thread(thread_data, base_path):
processed_data = []
media_set = set()
for data in thread_data:
cleaned_content = re.sub(
r"【\d+†source】", "", data["content"]
) # Remove all source annotations
media_list = []
for media in data.get("media", []):
if media["path"] and media["path"] not in media_set:
media_file_path = os.path.join(base_path, media["path"])
if os.path.isfile(media_file_path):
media_list.append(media)
media_set.add(media["path"])
processed_data.append({"content": cleaned_content, "media": media_list})
return processed_data
def render_markdown(processed_thread):
markdown_content = ""
for data in processed_thread:
markdown_content += data["content"] + "\n"
for media in data["media"]:
markdown_content += f'\n<div align="center">\n'
markdown_content += f' <img src="{media["path"]}" alt="{media.get("explain", "")}" style="max-width: 75%;">\n'
markdown_content += "</div>\n"
markdown_content += "\n---\n\n"
return markdown_content
def uri_validator(x):
try:
result = urlparse(x)
return all([result.scheme, result.netloc])
except:
return False
def create_thread(
pdf_url_or_path: str, output_path: str, client: openai.OpenAI, assistant_id: str
):
# Extract the PDF name from the URL and remove any file extension at the end
pdf_name = os.path.splitext(pdf_url_or_path.split("/")[-1])[0]
base_path = os.path.join(output_path, pdf_name)
results_path = os.path.join(base_path, "results.json")
pdf_path = os.path.join(base_path, f"{pdf_name}.pdf")
thread_path = os.path.join(base_path, "thread.json")
processed_thread_path = os.path.join(base_path, "processed_thread.json")
markdown_path = os.path.join(base_path, "processed_thread.md")
# Check if base path already exists and there is a results.json
# If so, assume we've run this before and just return results
if os.path.exists(base_path) and os.path.isfile(results_path):
with open(results_path, "r") as f:
results = json.load(f)
else:
os.makedirs(base_path, exist_ok=True)
if uri_validator(pdf_url_or_path):
pdf_content = requests.get(pdf_url_or_path).content
with open(pdf_path, "wb") as f:
f.write(pdf_content)
elif os.path.isfile(pdf_url_or_path):
shutil.copy(pdf_url_or_path, pdf_path)
with open(pdf_path, "rb") as f:
pdf_content = f.read()
else:
raise ValueError(
f"Invalid input: {pdf_url_or_path}. It should be a valid URL or a file path."
)
model = lp.models.Detectron2LayoutModel(
config_path="lp://PubLayNet/mask_rcnn_X_101_32x8d_FPN_3x/config",
extra_config=["MODEL.ROI_HEADS.SCORE_THRESH_TEST", 0.5],
label_map={0: "Text", 1: "Title", 2: "List", 3: "Table", 4: "Figure"},
)
results = process_pdf(pdf_content, model, base_path)
# Remove duplicates from results
results = [dict(t) for t in set(tuple(d.items()) for d in results)]
with open(results_path, "w") as f:
json.dump(results, f, indent=2)
paper_thread = generate_thread_content(pdf_path, results, client, assistant_id)
with open(thread_path, "w") as f:
json.dump(paper_thread, f, indent=2)
# Process the thread
processed_thread = process_thread(paper_thread, base_path)
with open(processed_thread_path, "w") as f:
json.dump(processed_thread, f, indent=2)
# Save processed thread as a markdown file
markdown_content = render_markdown(processed_thread)
with open(markdown_path, "w") as f:
f.write(markdown_content)
logger.info(f"Saved all outputs to: {os.path.abspath(base_path)}")
return base_path
def create_assistant_then_thread(
pdf_url_or_path: str,
output_path: str,
client: openai.OpenAI,
assistant_kwargs: Optional[dict] = None,
):
if assistant_kwargs is None:
assistant_kwargs = {}
try:
assistant = create_assistant(client, **assistant_kwargs)
except Exception:
logger.error("Failed to create assistant", exc_info=True)
raise
try:
saved_path = create_thread(
pdf_url_or_path,
output_path,
client,
assistant.id,
)
except Exception:
logger.error("Failed to create thread", exc_info=True)
raise
finally:
try:
client.beta.assistants.delete(assistant.id)
except Exception:
logger.error("Failed to delete assistant", exc_info=True)
raise
return saved_path
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Process a PDF from a URL or a local path."
)
parser.add_argument(
"url_or_path", type=str, help="The URL or local path of the PDF to process."
)
parser.add_argument(
"-o",
"--output",
default="data",
help="The output directory to store the results.",
)
args = parser.parse_args()
client = openai.OpenAI(api_key=os.environ["OPENAI_API_KEY"])
create_assistant_then_thread(args.url_or_path, args.output, client)
|