Spaces:
Paused
Paused
File size: 9,525 Bytes
ff8f4ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import os
import sys
from typing import Any, List
import json
import fire
import torch
import transformers
from datasets import Dataset, load_dataset
from peft import (
LoraConfig,
get_peft_model,
get_peft_model_state_dict,
prepare_model_for_int8_training,
set_peft_model_state_dict,
)
from transformers import LlamaForCausalLM, LlamaTokenizer
def train(
# model/data params
base_model: Any,
tokenizer: Any,
output_dir: str,
train_dataset_data: List[Any],
# training hyperparams
micro_batch_size: int = 4,
gradient_accumulation_steps: int = 32,
num_train_epochs: int = 3,
learning_rate: float = 3e-4,
cutoff_len: int = 256,
val_set_size: int = 2000, # TODO: use percentage
# lora hyperparams
lora_r: int = 8,
lora_alpha: int = 16,
lora_dropout: float = 0.05,
lora_target_modules: List[str] = [
"q_proj",
"v_proj",
],
# llm hyperparams
train_on_inputs: bool = True, # if False, masks out inputs in loss
group_by_length: bool = False, # faster, but produces an odd training loss curve
# either training checkpoint or final adapter
resume_from_checkpoint: str = None,
save_steps: int = 200,
save_total_limit: int = 3,
logging_steps: int = 10,
# logging
callbacks: List[Any] = []
):
if os.path.exists(output_dir):
if (not os.path.isdir(output_dir)) or os.path.exists(os.path.join(output_dir, 'adapter_config.json')):
raise ValueError(
f"The output directory already exists and is not empty. ({output_dir})")
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if ddp:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
model = base_model
if isinstance(model, str):
model = LlamaForCausalLM.from_pretrained(
base_model,
load_in_8bit=True,
torch_dtype=torch.float16,
device_map=device_map,
)
if isinstance(tokenizer, str):
tokenizer = LlamaTokenizer.from_pretrained(tokenizer)
tokenizer.pad_token_id = (
0 # unk. we want this to be different from the eos token
)
tokenizer.padding_side = "left" # Allow batched inference
def tokenize(prompt, add_eos_token=True):
# there's probably a way to do this with the tokenizer settings
# but again, gotta move fast
result = tokenizer(
prompt,
truncation=True,
max_length=cutoff_len,
padding=False,
return_tensors=None,
)
if (
result["input_ids"][-1] != tokenizer.eos_token_id
and len(result["input_ids"]) < cutoff_len
and add_eos_token
):
result["input_ids"].append(tokenizer.eos_token_id)
result["attention_mask"].append(1)
result["labels"] = result["input_ids"].copy()
return result
def generate_and_tokenize_prompt(data_point):
full_prompt = data_point["prompt"] + data_point["completion"]
tokenized_full_prompt = tokenize(full_prompt)
if not train_on_inputs:
user_prompt = data_point["prompt"]
tokenized_user_prompt = tokenize(user_prompt, add_eos_token=False)
user_prompt_len = len(tokenized_user_prompt["input_ids"])
tokenized_full_prompt["labels"] = [
-100
] * user_prompt_len + tokenized_full_prompt["labels"][
user_prompt_len:
] # could be sped up, probably
return tokenized_full_prompt
# will fail anyway.
try:
model = prepare_model_for_int8_training(model)
except Exception as e:
print(
f"Got error while running prepare_model_for_int8_training(model), maybe the model has already be prepared. Original error: {e}.")
# model = prepare_model_for_int8_training(model)
config = LoraConfig(
r=lora_r,
lora_alpha=lora_alpha,
target_modules=lora_target_modules,
lora_dropout=lora_dropout,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
# If train_dataset_data is a list, convert it to datasets.Dataset
if isinstance(train_dataset_data, list):
train_dataset_data = Dataset.from_list(train_dataset_data)
if resume_from_checkpoint:
# Check the available weights and load them
checkpoint_name = os.path.join(
resume_from_checkpoint, "pytorch_model.bin"
) # Full checkpoint
if not os.path.exists(checkpoint_name):
checkpoint_name = os.path.join(
resume_from_checkpoint, "adapter_model.bin"
) # only LoRA model - LoRA config above has to fit
resume_from_checkpoint = (
False # So the trainer won't try loading its state
)
# The two files above have a different name depending on how they were saved, but are actually the same.
if os.path.exists(checkpoint_name):
print(f"Restarting from {checkpoint_name}")
adapters_weights = torch.load(checkpoint_name)
model = set_peft_model_state_dict(model, adapters_weights)
else:
print(f"Checkpoint {checkpoint_name} not found")
# Be more transparent about the % of trainable params.
model.print_trainable_parameters()
if val_set_size > 0:
train_val = train_dataset_data.train_test_split(
test_size=val_set_size, shuffle=True, seed=42
)
train_data = (
train_val["train"].shuffle().map(generate_and_tokenize_prompt)
)
val_data = (
train_val["test"].shuffle().map(generate_and_tokenize_prompt)
)
else:
train_data = train_dataset_data.shuffle().map(generate_and_tokenize_prompt)
val_data = None
if not ddp and torch.cuda.device_count() > 1:
# keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
model.is_parallelizable = True
model.model_parallel = True
trainer = transformers.Trainer(
model=model,
train_dataset=train_data,
eval_dataset=val_data,
args=transformers.TrainingArguments(
per_device_train_batch_size=micro_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
warmup_steps=100,
num_train_epochs=num_train_epochs,
learning_rate=learning_rate,
fp16=True,
logging_steps=logging_steps,
optim="adamw_torch",
evaluation_strategy="steps" if val_set_size > 0 else "no",
save_strategy="steps",
eval_steps=200 if val_set_size > 0 else None,
save_steps=save_steps,
output_dir=output_dir,
save_total_limit=save_total_limit,
load_best_model_at_end=True if val_set_size > 0 else False,
ddp_find_unused_parameters=False if ddp else None,
group_by_length=group_by_length,
# report_to="wandb" if use_wandb else None,
# run_name=wandb_run_name if use_wandb else None,
),
data_collator=transformers.DataCollatorForSeq2Seq(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
),
callbacks=callbacks,
)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
with open(os.path.join(output_dir, "trainer_args.json"), 'w') as trainer_args_json_file:
json.dump(trainer.args.to_dict(), trainer_args_json_file, indent=2)
with open(os.path.join(output_dir, "finetune_params.json"), 'w') as finetune_params_json_file:
finetune_params = {
'micro_batch_size': micro_batch_size,
'gradient_accumulation_steps': gradient_accumulation_steps,
'num_train_epochs': num_train_epochs,
'learning_rate': learning_rate,
'cutoff_len': cutoff_len,
'lora_r': lora_r,
'lora_alpha': lora_alpha,
'lora_dropout': lora_dropout,
'lora_target_modules': lora_target_modules,
'train_on_inputs': train_on_inputs,
'group_by_length': group_by_length,
'save_steps': save_steps,
'save_total_limit': save_total_limit,
'logging_steps': logging_steps,
}
json.dump(finetune_params, finetune_params_json_file, indent=2)
model.config.use_cache = False
old_state_dict = model.state_dict
model.state_dict = (
lambda self, *_, **__: get_peft_model_state_dict(
self, old_state_dict()
)
).__get__(model, type(model))
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
train_output = trainer.train(resume_from_checkpoint=resume_from_checkpoint)
model.save_pretrained(output_dir)
print(f"Model saved to {output_dir}.")
with open(os.path.join(output_dir, "trainer_log_history.jsonl"), 'w') as trainer_log_history_jsonl_file:
trainer_log_history = "\n".join(
[json.dumps(line) for line in trainer.state.log_history])
trainer_log_history_jsonl_file.write(trainer_log_history)
with open(os.path.join(output_dir, "train_output.json"), 'w') as train_output_json_file:
json.dump(train_output, train_output_json_file, indent=2)
return train_output
|