Spaces:
Sleeping
Sleeping
File size: 9,982 Bytes
0d3e375 61f57fc 0d3e375 1a0701e 6a20cba 1a0701e 6a20cba 0d3e375 3b85924 0d3e375 98e235c cb89c28 98e235c 7236411 c6a3edf 98e235c ee6c452 98e235c 1a0701e 98e235c 1a0701e 98e235c 7236411 6a20cba 98e235c 7236411 98e235c 1a0701e 98e235c 1a0701e 98e235c 7236411 1a0701e 0d3e375 ee6c452 0d3e375 61f57fc ee6c452 61f57fc 146a258 6a20cba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import gradio as gr
from description import *
from reference_string_parsing import *
from controlled_summarization import *
from dataset_extraction import *
from controlled_summarization import recommended_kw
import requests
# Example Usage
# url = "https://arxiv.org/pdf/2305.14996.pdf"
# dest_folder = "./examples/"
# download_pdf(url, dest_folder)
with gr.Blocks(css="#htext span {white-space: pre-line}") as demo:
gr.Markdown("# Gradio Demo for SciAssist")
with gr.Tabs():
# Controlled Summarization
with gr.TabItem("Controlled Summarization"):
with gr.Box():
gr.Markdown(ctrlsum_file_md)
with gr.Row():
with gr.Column():
ctrlsum_url = gr.Textbox(label="PDF URL", max_lines=1)
ctrlsum_file = gr.File(label="Input File")
ctrlsum_str = gr.TextArea(label="Input String", max_lines=5)
with gr.Column():
gr.Markdown("* Set the length of text used for summarization. Length 0 will exert no control over length.")
# ctrlsum_file_beams = gr.Number(label="Number of beams for beam search", value=1, precision=0)
# ctrlsum_file_sequences = gr.Number(label="Number of generated summaries", value=1, precision=0)
ctrlsum_file_length = gr.Radio(label="Length", value=0, choices=[0, 50, 100, 200])
kw = gr.Radio(visible=False)
ctrlsum_file_keywords = gr.Textbox(label="Keywords", max_lines=1)
with gr.Row():
ctrlsum_file_btn = gr.Button("Generate")
ctrlsum_file_output = gr.Textbox(
elem_id="htext",
label="Summary",
)
ctrlsum_file_examples = gr.Examples(
examples=[["examples/H01-1042_body.txt", 50, "automatic evaluation technique", "", ""],
["examples/H01-1042.pdf", 0, "automatic evaluation technique", "", ""]],
inputs=[ctrlsum_file, ctrlsum_file_length, ctrlsum_file_keywords, ctrlsum_str, ctrlsum_url
])
ctrlsum_file_btn.click(
fn=ctrlsum_for_file,
inputs=[ctrlsum_file, ctrlsum_file_length, ctrlsum_file_keywords, ctrlsum_str, ctrlsum_url],
outputs=[ctrlsum_file_output, ctrlsum_str, ctrlsum_file]
)
def clear():
return None, 0, None, None, gr.Radio(visible=False)
def update_url(url):
if url in recommended_kw.keys():
keywords = recommended_kw[url]
if keywords != None:
return None, None, gr.Radio(choices=keywords[:3], label="Recommended Keywords", visible=True,
interactive=True)
return None, None, gr.Radio(visible=False)
ctrlsum_file.upload(clear, inputs=None,
outputs=[ctrlsum_str, ctrlsum_file_length, ctrlsum_file_keywords, ctrlsum_url, kw])
ctrlsum_url.input(update_url, inputs=ctrlsum_url, outputs=[ctrlsum_str, ctrlsum_file, kw])
ctrlsum_str.input(clear, inputs=None,
outputs=[ctrlsum_url, ctrlsum_file_length, ctrlsum_file_keywords, ctrlsum_file, kw])
def select_kw(env: gr.SelectData):
return env.value
kw.select(select_kw, None, ctrlsum_file_keywords)
# Reference String Parsing
with gr.TabItem("Reference String Parsing"):
gr.Markdown(rsp_title_md)
with gr.Box():
gr.Markdown(rsp_str_md)
with gr.Row():
with gr.Column():
rsp_str = gr.Textbox(label="Input String")
with gr.Column():
rsp_str_dehyphen = gr.Checkbox(label="dehyphen")
with gr.Row():
rsp_str_btn = gr.Button("Parse")
rsp_str_output = gr.HighlightedText(
elem_id="htext",
label="The Result of Parsing",
combine_adjacent=True,
adjacent_separator=" ",
)
rsp_str_examples = gr.Examples(examples=[[
"Waleed Ammar, Matthew E. Peters, Chandra Bhagavat- ula, and Russell Power. 2017. The ai2 system at semeval-2017 task 10 (scienceie): semi-supervised end-to-end entity and relation extraction. In ACL workshop (SemEval).",
True],
[
"Isabelle Augenstein, Mrinal Das, Sebastian Riedel, Lakshmi Vikraman, and Andrew D. McCallum. 2017. Semeval-2017 task 10 (scienceie): Extracting keyphrases and relations from scientific publications. In ACL workshop (SemEval).",
False]], inputs=[rsp_str, rsp_str_dehyphen])
with gr.Box():
gr.Markdown(rsp_file_md)
with gr.Row():
with gr.Column():
rsp_file = gr.File(label="Input File")
rsp_file_dehyphen = gr.Checkbox(label="dehyphen")
with gr.Row():
rsp_file_btn = gr.Button("Parse")
rsp_file_output = gr.HighlightedText(
elem_id="htext",
label="The Result of Parsing",
combine_adjacent=True,
adjacent_separator=" ",
)
rsp_file_examples = gr.Examples(examples=[["examples/N18-3011_ref.txt", False],["examples/BERT_paper.pdf", True]], inputs=[rsp_file, rsp_file_dehyphen])
rsp_file_btn.click(
fn=rsp_for_file,
inputs=[rsp_file, rsp_file_dehyphen],
outputs=rsp_file_output
)
rsp_str_btn.click(
fn=rsp_for_str,
inputs=[rsp_str, rsp_str_dehyphen],
outputs=rsp_str_output
)
# Dataset Extraction
with gr.TabItem("Dataset Mentions Extraction"):
gr.Markdown(de_title_md)
with gr.Box():
gr.Markdown(de_str_md)
with gr.Row():
with gr.Column():
de_str = gr.Textbox(label="Input String")
with gr.Row():
de_str_btn = gr.Button("Extract")
de_str_output = gr.HighlightedText(
elem_id="htext",
label="The Result of Extraction",
combine_adjacent=True,
adjacent_separator=" ",
)
de_str_examples = gr.Examples(examples=[["The impact of gender identity on emotions was examined by researchers using a subsample from the National Longitudinal Study of Adolescent Health. The study aimed to investigate the direct effects of gender identity on emotional experiences and expression. By focusing on a subsample of the larger study, the researchers were able to hone in on the specific relationship between gender identity and emotions. Through their analysis, the researchers sought to determine whether gender identity could have a significant and direct impact on emotional well-being. The findings of the study have important implications for our understanding of the complex interplay between gender identity and emotional experiences, and may help to inform future interventions and support for individuals who experience gender-related emotional distress."],
["The possibility of genotype-environment interaction for memory performance and change was examined in 150 monozygotic twin pairs from the Swedish Adoption Twin Study of Aging and the National Comorbidity Survey. They aimed to explore how genetic and environmental factors could interact to affect cognitive performance in aging individuals. Through their analysis, the researchers hoped to gain a better understanding of the complex interplay between nature and nurture in determining cognitive outcomes. By investigating the unique characteristics of monozygotic twins, who share identical genetic material, the study was able to isolate the role of environmental factors in shaping cognitive abilities over time. The findings from this research have important implications for our understanding of the complex interplay between genetics and the environment in shaping cognitive outcomes in aging individuals."]],
inputs=[de_str])
with gr.Box():
gr.Markdown(de_file_md)
with gr.Row():
with gr.Column():
de_file = gr.File(label="Input File")
with gr.Row():
de_file_btn = gr.Button("Extract")
de_file_output = gr.HighlightedText(
elem_id="htext",
label="The Result of Extraction",
combine_adjacent=True,
adjacent_separator=" ",
)
de_file_examples = gr.Examples(examples=[["examples/127.txt"]], inputs=[de_file])
de_file_btn.click(
fn=de_for_file,
inputs=[de_file],
outputs=de_file_output
)
de_str_btn.click(
fn=de_for_str,
inputs=[de_str],
outputs=de_str_output
)
demo.launch(share=False)
|