File size: 8,147 Bytes
e944437 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
# Copyright (c) SenseTime Research. All rights reserved.
from legacy import save_obj, load_pkl
import torch
from torch.nn import functional as F
import pandas as pd
from .edit_config import attr_dict
import os
def conv_warper(layer, input, style, noise):
# the conv should change
conv = layer.conv
batch, in_channel, height, width = input.shape
style = style.view(batch, 1, in_channel, 1, 1)
weight = conv.scale * conv.weight * style
if conv.demodulate:
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8)
weight = weight * demod.view(batch, conv.out_channel, 1, 1, 1)
weight = weight.view(
batch * conv.out_channel, in_channel, conv.kernel_size, conv.kernel_size
)
if conv.upsample:
input = input.view(1, batch * in_channel, height, width)
weight = weight.view(
batch, conv.out_channel, in_channel, conv.kernel_size, conv.kernel_size
)
weight = weight.transpose(1, 2).reshape(
batch * in_channel, conv.out_channel, conv.kernel_size, conv.kernel_size
)
out = F.conv_transpose2d(input, weight, padding=0, stride=2, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, conv.out_channel, height, width)
out = conv.blur(out)
elif conv.downsample:
input = conv.blur(input)
_, _, height, width = input.shape
input = input.view(1, batch * in_channel, height, width)
out = F.conv2d(input, weight, padding=0, stride=2, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, conv.out_channel, height, width)
else:
input = input.view(1, batch * in_channel, height, width)
out = F.conv2d(input, weight, padding=conv.padding, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, conv.out_channel, height, width)
out = layer.noise(out, noise=noise)
out = layer.activate(out)
return out
def decoder(G, style_space, latent, noise):
# an decoder warper for G
out = G.input(latent)
out = conv_warper(G.conv1, out, style_space[0], noise[0])
skip = G.to_rgb1(out, latent[:, 1])
i = 1
for conv1, conv2, noise1, noise2, to_rgb in zip(
G.convs[::2], G.convs[1::2], noise[1::2], noise[2::2], G.to_rgbs
):
out = conv_warper(conv1, out, style_space[i], noise=noise1)
out = conv_warper(conv2, out, style_space[i+1], noise=noise2)
skip = to_rgb(out, latent[:, i + 2], skip)
i += 2
image = skip
return image
def encoder_ifg(G, noise, attr_name, truncation=1, truncation_latent=None,
latent_dir='latent_direction/ss/',
step=0, total=0, real=False):
if not real:
styles = [noise]
styles = [G.style(s) for s in styles]
style_space = []
if truncation<1:
if not real:
style_t = []
for style in styles:
style_t.append(truncation_latent + truncation * (style - truncation_latent))
styles = style_t
else: # styles are latent (tensor: 1,18,512), for real PTI output
truncation_latent = truncation_latent.repeat(18,1).unsqueeze(0) # (1,512) --> (1,18,512)
styles = torch.add(truncation_latent,torch.mul(torch.sub(noise,truncation_latent),truncation))
noise = [getattr(G.noises, 'noise_{}'.format(i)) for i in range(G.num_layers)]
if not real:
inject_index = G.n_latent
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
else: latent=styles
style_space.append(G.conv1.conv.modulation(latent[:, 0]))
i = 1
for conv1, conv2, noise1, noise2, to_rgb in zip(
G.convs[::2], G.convs[1::2], noise[1::2], noise[2::2], G.to_rgbs
):
style_space.append(conv1.conv.modulation(latent[:, i]))
style_space.append(conv2.conv.modulation(latent[:, i+1]))
i += 2
# get layer, strength by dict
strength = attr_dict['interface_gan'][attr_name][0]
if step != 0 and total != 0:
strength = step / total * strength
for i in range(15):
style_vect = load_pkl(os.path.join(latent_dir, '{}/style_vect_mean_{}.pkl'.format(attr_name, i)))
style_vect = torch.from_numpy(style_vect).to(latent.device).float()
style_space[i] += style_vect * strength
return style_space, latent, noise
def encoder_ss(G, noise, attr_name, truncation=1, truncation_latent=None,
statics_dir="latent_direction/ss_statics",
latent_dir="latent_direction/ss/",
step=0, total=0,real=False):
if not real:
styles = [noise]
styles = [G.style(s) for s in styles]
style_space = []
if truncation<1:
if not real:
style_t = []
for style in styles:
style_t.append(
truncation_latent + truncation * (style - truncation_latent)
)
styles = style_t
else: # styles are latent (tensor: 1,18,512), for real PTI output
truncation_latent = truncation_latent.repeat(18,1).unsqueeze(0) # (1,512) --> (1,18,512)
styles = torch.add(truncation_latent,torch.mul(torch.sub(noise,truncation_latent),truncation))
noise = [getattr(G.noises, 'noise_{}'.format(i)) for i in range(G.num_layers)]
if not real:
inject_index = G.n_latent
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
else: latent = styles
style_space.append(G.conv1.conv.modulation(latent[:, 0]))
i = 1
for conv1, conv2, noise1, noise2, to_rgb in zip(
G.convs[::2], G.convs[1::2], noise[1::2], noise[2::2], G.to_rgbs
):
style_space.append(conv1.conv.modulation(latent[:, i]))
style_space.append(conv2.conv.modulation(latent[:, i+1]))
i += 2
# get threshold, layer, strength by dict
layer, strength, threshold = attr_dict['stylespace'][attr_name]
statis_dir = os.path.join(statics_dir, "{}_statis/{}".format(attr_name, layer))
statis_csv_path = os.path.join(statis_dir, "statis.csv")
statis_df = pd.read_csv(statis_csv_path)
statis_df = statis_df.sort_values(by='channel', ascending=True)
ch_mask = statis_df['strength'].values
ch_mask = torch.from_numpy(ch_mask).to(latent.device).float()
ch_mask = (ch_mask.abs()>threshold).float()
style_vect = load_pkl(os.path.join(latent_dir, '{}/style_vect_mean_{}.pkl'.format(attr_name, layer)))
style_vect = torch.from_numpy(style_vect).to(latent.device).float()
style_vect = style_vect * ch_mask
if step != 0 and total != 0:
strength = step / total * strength
style_space[layer] += style_vect * strength
return style_space, latent, noise
def encoder_sefa(G, noise, attr_name, truncation=1, truncation_latent=None,
latent_dir='latent_direction/sefa/',
step=0, total=0, real=False):
if not real:
styles = [noise]
styles = [G.style(s) for s in styles]
if truncation<1:
if not real:
style_t = []
for style in styles:
style_t.append(
truncation_latent + truncation * (style - truncation_latent)
)
styles = style_t
else:
truncation_latent = truncation_latent.repeat(18,1).unsqueeze(0) # (1,512) --> (1,18,512)
styles = torch.add(truncation_latent,torch.mul(torch.sub(noise,truncation_latent),truncation))
noise = [getattr(G.noises, 'noise_{}'.format(i)) for i in range(G.num_layers)]
if not real:
inject_index = G.n_latent
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
else: latent = styles
layer, strength = attr_dict['sefa'][attr_name]
sefa_vect = torch.load(os.path.join(latent_dir, '{}.pt'.format(attr_name))).to(latent.device).float()
if step != 0 and total != 0:
strength = step / total * strength
for l in layer:
latent[:, l, :] += (sefa_vect * strength * 2)
return latent, noise
|