File size: 20,928 Bytes
56c77d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
import os
import json
import gradio as gr
import shutil
import subprocess
import requests
import tarfile
from pathlib import Path
import soundfile as sf
import sherpa_onnx
from deep_translator import GoogleTranslator
import numpy as np
from iso639 import Lang
import pycountry

# Load model JSON
MODEL_JSON_URL = "https://github.com/willwade/tts-wrapper/blob/main/tts_wrapper/engines/sherpaonnx/merged_models.json"
MODEL_JSON_PATH = "./models.json"

# Load models
if not os.path.exists(MODEL_JSON_PATH):
    response = requests.get(MODEL_JSON_URL.replace("/blob/", "/raw/"))
    with open(MODEL_JSON_PATH, "w") as f:
        f.write(response.text)

with open(MODEL_JSON_PATH, "r") as f:
    models = json.load(f)

def get_model_display_info(model_info):
    """Create a display string for a model."""
    # Get language info
    lang_info = model_info.get('language', [{}])[0]
    lang_name = lang_info.get('language_name', lang_info.get('Language Name', 'Unknown'))
    lang_code = lang_info.get('lang_code', lang_info.get('Iso Code', 'Unknown'))
    
    # Get model info
    voice_name = model_info.get('name', model_info.get('id', 'Unknown'))
    developer = model_info.get('developer', '')
    quality = model_info.get('quality', 'MMS' if 'mms' in voice_name.lower() else '')
    
    # Create display name
    model_display = f"{voice_name} ({developer}"
    if quality:
        model_display += f" - {quality}"
    model_display += ")"
    
    # Combine language and model info
    return f"{lang_name} ({lang_code}) | {model_display}"

# Group models by language
models_by_lang = {}
for model_id, model_info in models.items():
    # Get language info from the first language in the list
    lang_info = model_info.get('language', [{}])[0]
    lang_name = lang_info.get('language_name', lang_info.get('Language Name', 'Unknown'))
    lang_code = lang_info.get('lang_code', lang_info.get('Iso Code', 'Unknown'))
    group_key = f"{lang_name} ({lang_code})"
    
    if group_key not in models_by_lang:
        models_by_lang[group_key] = []
    
    # Add model to language group
    models_by_lang[group_key].append((get_model_display_info(model_info), model_id))

# Create dropdown choices with model IDs as values
dropdown_choices = []
models_by_display = {}  # Map display names to model IDs
for lang, model_list in sorted(models_by_lang.items()):
    # Add all models in this language group
    for display_name, model_id in sorted(model_list):
        dropdown_choices.append(display_name)
        models_by_display[display_name] = model_id

def get_language_code(model_info):
    """Get the language code."""
    if not model_info.get("language"):
        return None
    
    lang_info = model_info["language"][0]
    # Try both key formats for language code
    lang_code = lang_info.get("lang_code", lang_info.get("Iso Code", "")).lower()
    return lang_code

# Special cases for codes not in ISO standard
SPECIAL_CODES = {
    "cmn": "zh",    # Mandarin Chinese
    "yue": "zh",    # Cantonese
    "pi": "el",     # Pali (using Greek for this model)
    "guj": "gu",    # Gujarati
}

def get_translate_code(iso_code):
    """Convert ISO code to Google Translate code."""
    if not iso_code:
        return None
        
    # Remove any script or dialect specifiers
    base_code = iso_code.split('-')[0].lower()
    
    # Check special cases first
    if base_code in SPECIAL_CODES:
        return SPECIAL_CODES[base_code]
        
    try:
        # Try to get the ISO 639-1 (2-letter) code
        lang = Lang(base_code)
        return lang.pt1
    except:
        # If that fails, try to find a matching language in pycountry
        try:
            lang = pycountry.languages.get(alpha_3=base_code)
            if lang and hasattr(lang, 'alpha_2'):
                return lang.alpha_2
        except:
            pass
    
    # If all else fails, try to use the original code
    if len(base_code) == 2:
        return base_code
    
    return None

def translate_text(input_text, source_lang="en", target_lang="en"):
    """Translate text using Google Translator."""
    if source_lang == target_lang:
        return input_text
    try:
        # Convert ISO code to Google Translate code
        target_lang = get_translate_code(target_lang)
        
        try:
            translated = GoogleTranslator(source=source_lang, target=target_lang).translate(input_text)
            return f"{translated} (translated from: {input_text})"
        except Exception as first_error:
            # If the first attempt fails with the mapped code, try with the original
            try:
                translated = GoogleTranslator(source=source_lang, target=target_lang).translate(input_text)
                return f"{translated} (translated from: {input_text})"
            except:
                raise first_error
                
    except Exception as e:
        print(f"Translation error: {str(e)} for target language: {target_lang}")
        print(f"Attempted to use language code: {target_lang}")
        return f"Translation Error: Could not translate to {target_lang}. Original text: {input_text}"

def download_and_extract_model(url, destination):
    """Download and extract the model files."""
    print(f"Downloading from URL: {url}")
    print(f"Destination: {destination}")
    
    # Convert Hugging Face URL format if needed
    if "huggingface.co" in url:
        # Replace /tree/main/ with /resolve/main/ for direct file download
        base_url = url.replace("/tree/main/", "/resolve/main/")
        model_id = base_url.split("/")[-1]
        
        # Check if this is an MMS model
        is_mms_model = "mms-tts-multilingual-models-onnx" in url
        
        if is_mms_model:
            # MMS models have both model.onnx and tokens.txt
            model_url = f"{base_url}/model.onnx"
            tokens_url = f"{base_url}/tokens.txt"
            
            # Download model.onnx
            print("Downloading model.onnx...")
            model_path = os.path.join(destination, "model.onnx")
            response = requests.get(model_url, stream=True)
            if response.status_code != 200:
                raise Exception(f"Failed to download model from {model_url}. Status code: {response.status_code}")
            
            total_size = int(response.headers.get('content-length', 0))
            block_size = 8192
            downloaded = 0
            
            print(f"Total size: {total_size / (1024*1024):.1f} MB")
            with open(model_path, "wb") as f:
                for chunk in response.iter_content(chunk_size=block_size):
                    if chunk:
                        f.write(chunk)
                        downloaded += len(chunk)
                        if total_size > 0:
                            percent = int((downloaded / total_size) * 100)
                            if percent % 10 == 0:
                                print(f" {percent}%", end="", flush=True)
            print("\nModel download complete")
            
            # Download tokens.txt
            print("Downloading tokens.txt...")
            tokens_path = os.path.join(destination, "tokens.txt")
            response = requests.get(tokens_url, stream=True)
            if response.status_code != 200:
                raise Exception(f"Failed to download tokens from {tokens_url}. Status code: {response.status_code}")
            
            with open(tokens_path, "wb") as f:
                f.write(response.content)
            print("Tokens download complete")
            
            return
        else:
            # Other models are stored as tar.bz2 files
            url = f"{base_url}.tar.bz2"
        
        # Try the URL
        response = requests.get(url, stream=True)
        if response.status_code != 200:
            raise Exception(f"Failed to download model from {url}. Status code: {response.status_code}")
        
        # Check if this is a Git LFS file pointer
        content_start = response.content[:100].decode('utf-8', errors='ignore')
        if content_start.startswith('version https://git-lfs.github.com/spec/v1'):
            raise Exception(f"Received Git LFS pointer instead of file content from {url}")
    
    # Create model directory if it doesn't exist
    os.makedirs(destination, exist_ok=True)
    
    # For non-MMS models, handle tar.bz2 files
    tar_path = os.path.join(destination, "model.tar.bz2")
    
    # Download the file
    print("Downloading model archive...")
    response = requests.get(url, stream=True)
    total_size = int(response.headers.get('content-length', 0))
    block_size = 8192
    downloaded = 0
    
    print(f"Total size: {total_size / (1024*1024):.1f} MB")
    with open(tar_path, "wb") as f:
        for chunk in response.iter_content(chunk_size=block_size):
            if chunk:
                f.write(chunk)
                downloaded += len(chunk)
                if total_size > 0:
                    percent = int((downloaded / total_size) * 100)
                    if percent % 10 == 0:
                        print(f" {percent}%", end="", flush=True)
    print("\nDownload complete")
    
    # Extract the tar.bz2 file
    print(f"Extracting {tar_path} to {destination}")
    try:
        with tarfile.open(tar_path, "r:bz2") as tar:
            tar.extractall(path=destination)
        os.remove(tar_path)
        print("Extraction complete")
    except Exception as e:
        print(f"Error during extraction: {str(e)}")
        raise
    
    print("Contents of destination directory:")
    for root, dirs, files in os.walk(destination):
        print(f"\nDirectory: {root}")
        if dirs:
            print("  Subdirectories:", dirs)
        if files:
            print("  Files:", files)

def find_model_files(model_dir):
    """Find model files in the given directory and its subdirectories."""
    model_files = {}
    
    # Check if this is an MMS model
    is_mms = 'mms' in os.path.basename(model_dir).lower()
    
    for root, _, files in os.walk(model_dir):
        for file in files:
            file_path = os.path.join(root, file)
            
            # Model file
            if file.endswith('.onnx'):
                model_files['model'] = file_path
            
            # Tokens file
            elif file == 'tokens.txt':
                model_files['tokens'] = file_path
            
            # Lexicon file (only for non-MMS models)
            elif file == 'lexicon.txt' and not is_mms:
                model_files['lexicon'] = file_path
    
    # Create empty lexicon file if needed (only for non-MMS models)
    if not is_mms and 'model' in model_files and 'lexicon' not in model_files:
        model_dir = os.path.dirname(model_files['model'])
        lexicon_path = os.path.join(model_dir, 'lexicon.txt')
        with open(lexicon_path, 'w', encoding='utf-8') as f:
            pass  # Create empty file
        model_files['lexicon'] = lexicon_path
    
    return model_files if 'model' in model_files else {}

def generate_audio(text, model_info):
    """Generate audio from text using the specified model."""
    try:
        model_dir = os.path.join("./models", model_info['id'])
        
        print(f"\nLooking for model in: {model_dir}")
        
        # Download model if it doesn't exist
        if not os.path.exists(model_dir):
            print(f"Model directory doesn't exist, downloading {model_info['id']}...")
            os.makedirs(model_dir, exist_ok=True)
            download_and_extract_model(model_info['url'], model_dir)
        
        print(f"Contents of {model_dir}:")
        for item in os.listdir(model_dir):
            item_path = os.path.join(model_dir, item)
            if os.path.isdir(item_path):
                print(f"  Directory: {item}")
                print(f"    Contents: {os.listdir(item_path)}")
            else:
                print(f"  File: {item}")
        
        # Find and validate model files
        model_files = find_model_files(model_dir)
        if not model_files or 'model' not in model_files:
            raise ValueError(f"Could not find required model files in {model_dir}")
        
        print("\nFound model files:")
        print(f"Model: {model_files['model']}")
        print(f"Tokens: {model_files.get('tokens', 'Not found')}")
        print(f"Lexicon: {model_files.get('lexicon', 'Not required for MMS')}\n")
        
        # Check if this is an MMS model
        is_mms = 'mms' in os.path.basename(model_dir).lower()
        
        # Create configuration based on model type
        if is_mms:
            if 'tokens' not in model_files or not os.path.exists(model_files['tokens']):
                raise ValueError("tokens.txt is required for MMS models")
                
            # MMS models use tokens.txt and no lexicon
            vits_config = sherpa_onnx.OfflineTtsVitsModelConfig(
                model_files['model'],  # model
                '',                    # lexicon
                model_files['tokens'], # tokens
                '',                    # data_dir
                '',                    # dict_dir
                0.667,                 # noise_scale
                0.8,                   # noise_scale_w
                1.0                    # length_scale
            )
        else:
            # Non-MMS models use lexicon.txt
            if 'tokens' not in model_files or not os.path.exists(model_files['tokens']):
                raise ValueError("tokens.txt is required for VITS models")
                
            # Set data dir if it exists
            espeak_data = os.path.join(os.path.dirname(model_files['model']), 'espeak-ng-data')
            data_dir = espeak_data if os.path.exists(espeak_data) else ''
            
            # Get lexicon path if it exists
            lexicon = model_files.get('lexicon', '') if os.path.exists(model_files.get('lexicon', '')) else ''
            
            # Create VITS model config
            vits_config = sherpa_onnx.OfflineTtsVitsModelConfig(
                model_files['model'],  # model
                lexicon,               # lexicon
                model_files['tokens'], # tokens
                data_dir,             # data_dir
                '',                   # dict_dir
                0.667,                # noise_scale
                0.8,                  # noise_scale_w
                1.0                   # length_scale
            )
        
        # Create the model config with VITS
        model_config = sherpa_onnx.OfflineTtsModelConfig()
        model_config.vits = vits_config
        
        # Create TTS configuration
        config = sherpa_onnx.OfflineTtsConfig(
            model=model_config,
            max_num_sentences=2
        )
        
        # Initialize TTS engine
        tts = sherpa_onnx.OfflineTts(config)

        # Generate audio
        audio_data = tts.generate(text)

        # Ensure we have valid audio data
        if audio_data is None or len(audio_data.samples) == 0:
            raise ValueError("Failed to generate audio - no data generated")
            
        # Convert samples list to numpy array and normalize
        audio_array = np.array(audio_data.samples, dtype=np.float32)
        if np.any(audio_array):  # Check if array is not all zeros
            audio_array = audio_array / np.abs(audio_array).max()
        else:
            raise ValueError("Generated audio is empty")
            
        # Return in Gradio's expected format (numpy array, sample rate)
        return (audio_array, audio_data.sample_rate)
            
    except Exception as e:
        error_msg = str(e)
        # Check for OOV or token conversion errors
        if "out of vocabulary" in error_msg.lower() or "token" in error_msg.lower():
            error_msg = f"Text contains unsupported characters: {error_msg}"
        print(f"Error generating audio: {error_msg}")
        print(f"Error in TTS generation: {error_msg}")
        raise

def tts_interface(selected_model, text, translate_enabled, status_output):
    try:
        if not text.strip():
            return None, "Please enter some text"
            
        # Get model ID from the display name mapping
        model_id = models_by_display.get(selected_model)
        if not model_id or model_id not in models:
            return None, "Please select a model"
            
        model_info = models[model_id]
        
        # Check if this is an MMS model
        is_mms = 'mms' in model_id.lower()
        
        # Get the language code and check if translation is needed
        lang_code = get_language_code(model_info)
        translate_code = get_translate_code(lang_code)
        
        # For MMS models, we always need to translate
        if is_mms:
            if not translate_code:
                return None, f"Cannot determine translation target language from code: {lang_code}"
            print(f"MMS model detected, translating to {translate_code}")
            text = translate_text(text, "en", translate_code)
        # For other models, check if translation is enabled and needed
        elif translate_enabled and translate_code and translate_code != "en":
            if not translate_code:
                return None, f"Cannot determine translation target language from code: {lang_code}"
            print(f"Will translate to {translate_code} (from ISO code {lang_code})")
            text = translate_text(text, "en", translate_code)
        
        try:
            # Update status with language info
            lang_info = model_info.get('language', [{}])[0]
            lang_name = lang_info.get('language_name', 'Unknown')
            voice_name = model_info.get('name', model_id)
            status = f"Generating speech using {voice_name} ({lang_name})..."
            
            # Generate audio
            audio_data, sample_rate = generate_audio(text, model_info)
            
            return (sample_rate, audio_data), f"Generated speech using {voice_name} ({lang_name})"
            
        except ValueError as e:
            # Handle known errors with user-friendly messages
            error_msg = str(e)
            if "cannot process some words" in error_msg.lower():
                return None, error_msg
            return None, f"Error: {error_msg}"
            
    except Exception as e:
        print(f"Error in TTS generation: {str(e)}")
        error_msg = str(e)
        return None, f"Error: {error_msg}"

# Gradio Interface
with gr.Blocks() as app:
    gr.Markdown("# Sherpa-ONNX TTS Demo")
    with gr.Row():
        with gr.Column():
            model_dropdown = gr.Dropdown(
                choices=dropdown_choices,
                label="Select Model",
                value=dropdown_choices[0] if dropdown_choices else None
            )
            text_input = gr.Textbox(
                label="Text to speak",
                placeholder="Enter text here...",
                lines=3
            )
            translate_checkbox = gr.Checkbox(
                label="Translate to model language",
                value=False
            )
            with gr.Row():
                generate_btn = gr.Button("Generate Audio")
                stop_btn = gr.Button("Stop")
            
        with gr.Column():
            audio_output = gr.Audio(
                label="Generated Audio",
                type="numpy"
            )
            status_text = gr.Textbox(
                label="Status",
                interactive=False
            )
    
    # Handle model selection to update translate checkbox
    def update_translate_checkbox(selected_model):
        """Update visibility of translate checkbox based on selected model's language."""
        try:
            # Find the model info for the selected model
            for lang_group in models_by_lang.values():
                for display_name, model_id in lang_group:
                    if display_name == selected_model:
                        model_info = models[model_id]
                        lang_info = model_info.get('language', [{}])[0]
                        lang_code = lang_info.get('lang_code', '')
                        return {"visible": lang_code != 'en'}
            return {"visible": False}
        except Exception as e:
            print(f"Error updating translate checkbox: {str(e)}")
            return {"visible": False}

    model_dropdown.change(
        fn=update_translate_checkbox,
        inputs=[model_dropdown],
        outputs=[translate_checkbox]
    )
            
    # Set up event handlers
    gen_event = generate_btn.click(
        fn=tts_interface,
        inputs=[model_dropdown, text_input, translate_checkbox, status_text],
        outputs=[audio_output, status_text]
    )
    
    stop_btn.click(
        fn=None,
        cancels=gen_event,
        queue=False
    )

app.launch()