File size: 49,010 Bytes
f5b302e
 
36fcf07
 
b5cc3fd
 
36fcf07
f5b302e
 
deb6f27
 
f5b302e
 
 
deb6f27
f5b302e
 
deb6f27
f5b302e
 
 
 
 
deb6f27
f5b302e
 
deb6f27
 
 
f5b302e
 
 
 
deb6f27
f5b302e
 
 
 
 
deb6f27
f5b302e
deb6f27
f5b302e
 
 
 
deb6f27
f5b302e
 
 
 
 
deb6f27
f5b302e
 
 
 
 
deb6f27
f5b302e
 
 
 
deb6f27
 
 
 
f5b302e
 
 
 
deb6f27
 
 
 
 
 
 
f5b302e
deb6f27
f5b302e
 
deb6f27
 
 
 
 
 
 
 
 
 
 
 
f5b302e
 
deb6f27
 
 
 
 
 
 
f5b302e
 
 
deb6f27
f5b302e
 
deb6f27
f5b302e
 
 
deb6f27
f5b302e
 
 
deb6f27
f5b302e
 
 
 
 
 
deb6f27
f5b302e
 
 
 
deb6f27
f5b302e
 
 
deb6f27
f5b302e
 
 
deb6f27
f5b302e
 
deb6f27
f5b302e
 
deb6f27
f5b302e
 
deb6f27
 
 
 
f5b302e
 
b5cc3fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deb6f27
f5b302e
 
deb6f27
 
f5b302e
deb6f27
f5b302e
 
 
deb6f27
 
fa1bef5
 
759b2cf
deb6f27
fa1bef5
f5b302e
fa1bef5
 
 
f5b302e
fa1bef5
 
 
 
 
deb6f27
 
 
 
 
 
 
fa1bef5
 
deb6f27
 
fa1bef5
36fcf07
fa1bef5
 
36fcf07
fa1bef5
 
 
 
 
 
 
759b2cf
 
 
 
 
 
 
36fcf07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa1bef5
36fcf07
fa1bef5
 
 
 
 
 
 
 
 
 
238c097
36fcf07
238c097
36fcf07
fa1bef5
 
 
 
 
 
 
 
 
 
 
 
 
 
36fcf07
 
 
238c097
36fcf07
 
 
 
 
238c097
36fcf07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238c097
36fcf07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238c097
 
36fcf07
 
 
238c097
36fcf07
238c097
 
36fcf07
 
 
 
238c097
36fcf07
 
 
 
 
 
 
 
238c097
 
 
36fcf07
 
 
 
 
 
fa1bef5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36fcf07
 
 
 
 
 
fa1bef5
759b2cf
 
 
fa1bef5
 
 
 
 
 
 
 
36fcf07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8d94c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deb6f27
 
 
 
 
 
36fcf07
 
 
 
 
 
 
deb6f27
36fcf07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f87515
36fcf07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deb6f27
 
 
 
 
 
 
 
 
 
 
f5b302e
deb6f27
f5b302e
 
 
 
deb6f27
 
f5b302e
 
 
 
deb6f27
 
 
 
 
 
f5b302e
 
 
fa1bef5
f5b302e
deb6f27
fa1bef5
 
c8d94c7
deb6f27
fa1bef5
 
deb6f27
fa1bef5
 
 
deb6f27
fa1bef5
deb6f27
fa1bef5
 
 
 
c8d94c7
 
fa1bef5
 
 
 
 
 
 
 
 
 
 
 
 
deb6f27
fa1bef5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
daa76db
f5b302e
daa76db
deb6f27
daa76db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa1bef5
 
 
 
 
 
 
 
36fcf07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa1bef5
daa76db
 
 
fa1bef5
36fcf07
 
 
 
fa1bef5
 
 
daa76db
 
 
 
36fcf07
 
 
 
daa76db
 
 
fa1bef5
36fcf07
daa76db
 
 
36fcf07
 
 
fa1bef5
 
daa76db
 
 
36fcf07
 
 
daa76db
 
deb6f27
f5b302e
 
deb6f27
36fcf07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f87515
36fcf07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5b302e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
import json
import random
import threading
import time
import datetime
import os
from typing import Dict, List, Any, Optional
from sentence_transformers import SentenceTransformer
import numpy as np
from transformers import pipeline


class SocialGraphManager:
    """Manages the social graph and provides context for the AAC system."""

    def __init__(self, graph_path: str = "social_graph.json"):
        """Initialize the social graph manager.

        Args:
            graph_path: Path to the social graph JSON file
        """
        self.graph_path = graph_path
        self.graph = self._load_graph()

        # Initialize sentence transformer for semantic matching
        try:
            self.sentence_model = SentenceTransformer(
                "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
            )
            self.embeddings_cache = {}
            self._initialize_embeddings()
        except Exception as e:
            self.sentence_model = None

    def _load_graph(self) -> Dict[str, Any]:
        """Load the social graph from the JSON file."""
        try:
            with open(self.graph_path, "r") as f:
                return json.load(f)
        except Exception:
            return {"people": {}, "places": [], "topics": []}

    def _initialize_embeddings(self):
        """Initialize embeddings for topics and phrases in the social graph."""
        if not self.sentence_model:
            return

        # Create embeddings for topics
        topics = self.graph.get("topics", [])
        for topic in topics:
            if topic not in self.embeddings_cache:
                self.embeddings_cache[topic] = self.sentence_model.encode(topic)

        # Create embeddings for common phrases
        for person_id, person_data in self.graph.get("people", {}).items():
            for phrase in person_data.get("common_phrases", []):
                if phrase not in self.embeddings_cache:
                    self.embeddings_cache[phrase] = self.sentence_model.encode(phrase)

        # Create embeddings for common utterances
        for category, utterances in self.graph.get("common_utterances", {}).items():
            for utterance in utterances:
                if utterance not in self.embeddings_cache:
                    self.embeddings_cache[utterance] = self.sentence_model.encode(
                        utterance
                    )

    def get_people_list(self) -> List[Dict[str, str]]:
        """Get a list of people from the social graph with their names and roles."""
        people = []
        for person_id, person_data in self.graph.get("people", {}).items():
            people.append(
                {
                    "id": person_id,
                    "name": person_data.get("name", person_id),
                    "role": person_data.get("role", ""),
                }
            )
        return people

    def get_person_context(self, person_id: str) -> Dict[str, Any]:
        """Get context information for a specific person."""
        # Check if the person_id contains a display name (e.g., "Emma (wife)")
        # and try to extract the actual ID
        if person_id not in self.graph.get("people", {}):
            # Try to find the person by name
            for pid, pdata in self.graph.get("people", {}).items():
                name = pdata.get("name", "")
                role = pdata.get("role", "")
                if f"{name} ({role})" == person_id:
                    person_id = pid
                    break

        # If still not found, return empty dict
        if person_id not in self.graph.get("people", {}):
            return {}

        person_data = self.graph["people"][person_id]
        return person_data

    def get_relevant_phrases(
        self, person_id: str, user_input: Optional[str] = None
    ) -> List[str]:
        """Get relevant phrases for a specific person based on user input."""
        if person_id not in self.graph.get("people", {}):
            return []

        person_data = self.graph["people"][person_id]
        phrases = person_data.get("common_phrases", [])

        # If no user input, return random phrases
        if not user_input or not self.sentence_model:
            return random.sample(phrases, min(3, len(phrases)))

        # Use semantic search to find relevant phrases
        user_embedding = self.sentence_model.encode(user_input)
        phrase_scores = []

        for phrase in phrases:
            if phrase in self.embeddings_cache:
                phrase_embedding = self.embeddings_cache[phrase]
            else:
                phrase_embedding = self.sentence_model.encode(phrase)
                self.embeddings_cache[phrase] = phrase_embedding

            similarity = np.dot(user_embedding, phrase_embedding) / (
                np.linalg.norm(user_embedding) * np.linalg.norm(phrase_embedding)
            )
            phrase_scores.append((phrase, similarity))

        # Sort by similarity score and return top phrases
        phrase_scores.sort(key=lambda x: x[1], reverse=True)
        return [phrase for phrase, _ in phrase_scores[:3]]

    def get_common_utterances(self, category: Optional[str] = None) -> List[str]:
        """Get common utterances from the social graph, optionally filtered by category."""
        utterances = []

        if "common_utterances" not in self.graph:
            return utterances

        if category and category in self.graph["common_utterances"]:
            return self.graph["common_utterances"][category]

        # If no category specified, return a sample from each category
        for category_utterances in self.graph["common_utterances"].values():
            utterances.extend(
                random.sample(category_utterances, min(2, len(category_utterances)))
            )

        return utterances

    def get_conversation_history(
        self, person_id: str, max_conversations: int = 2
    ) -> List[Dict[str, Any]]:
        """Get recent conversation history for a specific person.

        Args:
            person_id: ID of the person to get conversation history for
            max_conversations: Maximum number of recent conversations to return

        Returns:
            List of conversation history entries, most recent first
        """
        if person_id not in self.graph.get("people", {}):
            return []

        person_data = self.graph["people"][person_id]
        conversation_history = person_data.get("conversation_history", [])

        # Sort by timestamp (most recent first)
        sorted_history = sorted(
            conversation_history, key=lambda x: x.get("timestamp", ""), reverse=True
        )

        # Return the most recent conversations
        return sorted_history[:max_conversations]

    def add_conversation(self, person_id: str, messages: List[Dict[str, str]]) -> bool:
        """Add a new conversation to a person's history.

        Args:
            person_id: ID of the person to add conversation for
            messages: List of message objects with "speaker" and "text" fields

        Returns:
            True if successful, False otherwise
        """
        if person_id not in self.graph.get("people", {}):
            return False

        # Create a new conversation entry
        import datetime

        new_conversation = {
            "timestamp": datetime.datetime.now().isoformat(),
            "messages": messages,
        }

        # Add to the person's conversation history
        if "conversation_history" not in self.graph["people"][person_id]:
            self.graph["people"][person_id]["conversation_history"] = []

        self.graph["people"][person_id]["conversation_history"].append(new_conversation)

        # Save the updated graph
        return self._save_graph()

    def _save_graph(self) -> bool:
        """Save the social graph to the JSON file.

        Returns:
            True if successful, False otherwise
        """
        try:
            print(f"Saving social graph to {self.graph_path}")
            # Check if the file is writable
            if os.path.exists(self.graph_path):
                if not os.access(self.graph_path, os.W_OK):
                    print(f"Error: No write permission for {self.graph_path}")
                    return False

            # Save the graph
            with open(self.graph_path, "w") as f:
                json.dump(self.graph, f, indent=2)

            print("Social graph saved successfully")
            return True
        except Exception as e:
            print(f"Error saving social graph: {e}")
            import traceback

            traceback.print_exc()
            return False

    def summarize_conversation(self, conversation: Dict[str, Any]) -> str:
        """Generate a summary of a conversation.

        Args:
            conversation: Conversation entry with timestamp and messages

        Returns:
            A summary string of the conversation
        """
        if not conversation or "messages" not in conversation:
            return "No conversation data available"

        messages = conversation.get("messages", [])
        if not messages:
            return "No messages in conversation"

        # Extract timestamp and format it
        timestamp = conversation.get("timestamp", "")
        try:
            dt = datetime.datetime.fromisoformat(timestamp)
            formatted_date = dt.strftime("%B %d, %Y at %I:%M %p")
        except (ValueError, TypeError):
            formatted_date = timestamp

        # Create a brief summary
        topic_keywords = set()
        for message in messages:
            # Extract potential keywords from messages
            text = message.get("text", "").lower()
            # Simple keyword extraction - could be improved with NLP
            words = [
                w
                for w in text.split()
                if len(w) > 4
                and w
                not in [
                    "about",
                    "would",
                    "could",
                    "should",
                    "their",
                    "there",
                    "these",
                    "those",
                    "where",
                    "which",
                    "today",
                    "tomorrow",
                ]
            ]
            topic_keywords.update(words[:3])  # Add up to 3 keywords per message

        # Limit to 5 most representative keywords
        topic_keywords = list(topic_keywords)[:5]

        # Create summary
        first_speaker = messages[0].get("speaker", "Unknown") if messages else "Unknown"
        message_count = len(messages)

        summary = f"Conversation on {formatted_date}: {first_speaker} initiated a {message_count}-message conversation"

        if topic_keywords:
            summary += f" about {', '.join(topic_keywords)}"

        return summary


class SuggestionGenerator:
    """Generates contextual suggestions for the AAC system."""

    def __init__(self, model_name: str = "distilgpt2"):
        """Initialize the suggestion generator.

        Args:
            model_name: Name of the HuggingFace model to use
        """
        self.model_name = model_name
        self.model_loaded = False
        self.generator = None
        self.aac_user_info = None
        self.loaded_models = {}  # Cache for loaded models

        # Load AAC user information from social graph
        try:
            with open("social_graph.json", "r") as f:
                social_graph = json.load(f)
                self.aac_user_info = social_graph.get("aac_user", {})
        except Exception as e:
            print(f"Error loading AAC user info from social graph: {e}")
            self.aac_user_info = {}

        # Try to load the model
        self.load_model(model_name)

        # Fallback responses if model fails to load or generate
        self.fallback_responses = [
            "I'm not sure how to respond to that.",
            "That's interesting. Tell me more.",
            "I'd like to talk about that further.",
            "I appreciate you sharing that with me.",
            "Could we talk about something else?",
            "I need some time to think about that.",
        ]

    def load_model(self, model_name: str) -> bool:
        """Load a model (either Hugging Face model or API-based model).

        Args:
            model_name: Name of the model to use (HuggingFace model name or API identifier)

        Returns:
            bool: True if model loaded successfully, False otherwise
        """
        self.model_name = model_name
        self.model_loaded = False

        # Check if model is already loaded in cache
        if model_name in self.loaded_models:
            print(f"Using cached model: {model_name}")
            self.generator = self.loaded_models[model_name]
            self.model_loaded = True
            return True

        # Check if this is a Gemini API model
        if model_name.startswith("gemini-api:"):
            try:
                import os
                import google.generativeai as genai

                # Get API key from environment
                api_key = os.environ.get("GEMINI_API_KEY")
                if not api_key:
                    print("No GEMINI_API_KEY found in environment variables.")
                    print("Please set the GEMINI_API_KEY environment variable.")
                    return False

                # Configure the Gemini API
                genai.configure(api_key=api_key)

                # Extract the specific model name after the prefix
                gemini_model = model_name.split(":", 1)[1]
                print(f"Using Gemini API with model: {gemini_model}")

                # Store the model name and API client in the generator
                self.generator = {
                    "type": "gemini-api",
                    "model": gemini_model,
                    "client": genai,
                }

                # Cache the API client
                self.loaded_models[model_name] = self.generator

                self.model_loaded = True
                print(f"Gemini API configured successfully for model: {gemini_model}")
                return True

            except Exception as e:
                print(f"Error configuring Gemini API: {e}")
                self.model_loaded = False
                return False

        # Otherwise, try to load a Hugging Face model
        try:
            print(f"Loading Hugging Face model: {model_name}")

            # Check if this is a gated model that requires authentication
            is_gated_model = any(
                name in model_name.lower()
                for name in ["gemma", "llama", "mistral", "qwen", "phi"]
            )

            if is_gated_model:
                # Try to get token from environment
                import os
                import torch
                import time
                from transformers import BitsAndBytesConfig
                from requests.exceptions import ConnectionError, Timeout, HTTPError

                token = os.environ.get("HUGGING_FACE_HUB_TOKEN") or os.environ.get(
                    "HF_TOKEN"
                )

                if token:
                    print(f"Using token for gated model: {model_name}")
                    from huggingface_hub import login

                    login(token=token, add_to_git_credential=False)

                    # Explicitly pass token to pipeline
                    from transformers import AutoTokenizer, AutoModelForCausalLM

                    # Implement retry mechanism for network issues
                    max_retries = 3
                    retry_delay = 2  # seconds

                    for attempt in range(max_retries):
                        try:
                            print(
                                f"Attempt {attempt+1}/{max_retries} to load model: {model_name}"
                            )

                            # First try to load just the tokenizer to check connectivity
                            print(f"Loading tokenizer for {model_name}...")
                            tokenizer = AutoTokenizer.from_pretrained(
                                model_name,
                                token=token,
                                use_fast=True,
                                local_files_only=False,
                            )
                            print(f"Tokenizer loaded successfully for {model_name}")

                            # Configure 4-bit quantization to save memory
                            print("Configuring quantization settings...")
                            quantization_config = BitsAndBytesConfig(
                                load_in_4bit=True,
                                bnb_4bit_compute_dtype=torch.float16,
                                bnb_4bit_quant_type="nf4",
                                bnb_4bit_use_double_quant=True,
                            )

                            # Load model with quantization
                            print(f"Loading model {model_name} with quantization...")
                            model = AutoModelForCausalLM.from_pretrained(
                                model_name,
                                token=token,
                                quantization_config=quantization_config,
                                device_map="auto",
                                low_cpu_mem_usage=True,
                            )
                            print(
                                f"Model {model_name} loaded successfully with quantization"
                            )

                            # Create pipeline
                            print("Creating text generation pipeline...")
                            self.generator = {
                                "type": "huggingface",
                                "pipeline": pipeline(
                                    "text-generation",
                                    model=model,
                                    tokenizer=tokenizer,
                                    torch_dtype=torch.float16,
                                ),
                            }
                            print("Pipeline created successfully")

                            # If we got here, loading succeeded
                            break

                        except (ConnectionError, Timeout, HTTPError) as network_error:
                            # Handle network-related errors with retries
                            print(
                                f"Network error loading model (attempt {attempt+1}/{max_retries}): {network_error}"
                            )
                            if attempt < max_retries - 1:
                                print(f"Retrying in {retry_delay} seconds...")
                                time.sleep(retry_delay)
                                retry_delay *= 2  # Exponential backoff
                            else:
                                print(
                                    "Maximum retries reached, falling back to alternative loading method"
                                )
                                raise network_error

                        except (RuntimeError, ValueError, OSError) as e:
                            # Handle memory errors or other issues
                            print(
                                f"Error loading gated model with token (attempt {attempt+1}/{max_retries}): {e}"
                            )
                            print(
                                "This may be due to memory limitations, network issues, or insufficient permissions."
                            )

                            if "CUDA out of memory" in str(
                                e
                            ) or "DefaultCPUAllocator" in str(e):
                                print(
                                    "Memory error detected. Trying with more aggressive memory optimization..."
                                )
                                break  # Skip to non-quantized version with CPU offloading

                            if attempt < max_retries - 1:
                                print(f"Retrying in {retry_delay} seconds...")
                                time.sleep(retry_delay)
                                retry_delay *= 2  # Exponential backoff
                            else:
                                print(
                                    "Maximum retries reached, falling back to alternative loading method"
                                )

                    # If the loop completed without success, try alternative loading methods
                    if not hasattr(self, "generator") or self.generator is None:
                        # Try loading without quantization as fallback
                        try:
                            print(
                                "Trying to load model without quantization (CPU only)..."
                            )
                            tokenizer = AutoTokenizer.from_pretrained(
                                model_name, token=token, use_fast=True
                            )
                            model = AutoModelForCausalLM.from_pretrained(
                                model_name,
                                token=token,
                                device_map="cpu",
                                low_cpu_mem_usage=True,
                            )
                            self.generator = {
                                "type": "huggingface",
                                "pipeline": pipeline(
                                    "text-generation", model=model, tokenizer=tokenizer
                                ),
                            }
                            print(
                                "Successfully loaded model on CPU without quantization"
                            )
                        except Exception as e2:
                            print(f"Fallback loading also failed: {e2}")
                            print(
                                "All loading attempts failed. Please try a different model or check your connection."
                            )
                            raise RuntimeError(
                                f"Failed to load model after multiple attempts: {str(e2)}"
                            )
                else:
                    print("No Hugging Face token found in environment variables.")
                    print(
                        "To use gated models like Gemma, you need to set up a token with the right permissions."
                    )
                    print("1. Create a token at https://huggingface.co/settings/tokens")
                    print(
                        "2. Make sure to enable 'Access to public gated repositories'"
                    )
                    print(
                        "3. Set it as an environment variable: export HUGGING_FACE_HUB_TOKEN=your_token_here"
                    )
                    raise ValueError("Authentication token required for gated model")
            else:
                # For non-gated models, use the standard pipeline
                from transformers import pipeline

                self.generator = {
                    "type": "huggingface",
                    "pipeline": pipeline("text-generation", model=model_name),
                }

            # Cache the loaded model
            self.loaded_models[model_name] = self.generator

            self.model_loaded = True
            print(f"Model loaded successfully: {model_name}")
            return True
        except Exception as e:
            print(f"Error loading model: {e}")
            self.model_loaded = False
            return False

    def _clean_small_model_response(self, response: str) -> str:
        """Clean up responses from small models that often repeat instructions or generate nonsense.

        Args:
            response: The raw response from the model

        Returns:
            A cleaned response
        """
        # If response is too short, return as is
        if len(response) < 5:
            return response

        # Remove common instruction repetitions
        patterns_to_remove = [
            "I want to respond to what",
            "I'll use language appropriate for our relationship",
            "I should speak in first person",
            "I should use language appropriate",
            "I want to respond directly",
            "I'll speak as myself",
            "I want to initiate a conversation",
            "My response should be natural",
            "My response to",
            "Will's response to",
            "Will says to",
        ]

        # Check for and remove these patterns
        cleaned_response = response
        for pattern in patterns_to_remove:
            if pattern in cleaned_response:
                # Find the first occurrence and remove everything from there
                index = cleaned_response.find(pattern)
                if index > 10:  # Keep some beginning text if available
                    cleaned_response = cleaned_response[:index].strip()
                else:
                    # If pattern is at the beginning, remove just that pattern
                    parts = cleaned_response.split(pattern, 1)
                    if len(parts) > 1:
                        cleaned_response = parts[1].strip()

        # Remove any lines that are just the name repeated
        lines = cleaned_response.split("\n")
        cleaned_lines = []
        for line in lines:
            # Skip lines that are just a name repeated
            if line.strip() and not all(
                word == line.split()[0] for word in line.split()
            ):
                cleaned_lines.append(line)

        cleaned_response = "\n".join(cleaned_lines).strip()

        # If we've removed too much, use a fallback
        if len(cleaned_response) < 5:
            return "I'm not sure what to say about that."

        # Limit to first 2 sentences to avoid rambling
        sentences = cleaned_response.split(".")
        if len(sentences) > 2:
            cleaned_response = ".".join(sentences[:2]) + "."

        return cleaned_response

    def _get_mood_description(self, mood_value: int) -> str:
        """Convert mood value (1-5) to a descriptive string.

        Args:
            mood_value: Integer from 1-5 representing mood (1=sad, 5=happy)

        Returns:
            String description of the mood
        """
        mood_descriptions = {
            1: "I'm feeling quite down and sad today. My responses might be more subdued.",
            2: "I'm feeling a bit low today. I might be less enthusiastic than usual.",
            3: "I'm feeling okay today - neither particularly happy nor sad.",
            4: "I'm feeling pretty good today. I'm in a positive mood.",
            5: "I'm feeling really happy and upbeat today! I'm in a great mood.",
        }

        # Default to neutral if value is out of range
        return mood_descriptions.get(mood_value, mood_descriptions[3])

    def test_model(self) -> str:
        """Test if the model is working correctly."""
        if not self.model_loaded:
            return "Model not loaded"

        try:
            # Create a more explicit test prompt that clearly establishes Will's identity and role
            test_prompt = """I am Will, a 38-year-old with MND (Motor Neuron Disease).
I am talking to my 7-year-old son Billy.
Billy just asked me about football.
I want to respond to Billy in a natural, brief way.

My response to Billy:"""
            print(f"Testing model with prompt: {test_prompt}")

            # Check if we're using the Gemini API or a Hugging Face model
            if (
                isinstance(self.generator, dict)
                and self.generator.get("type") == "gemini-api"
            ):
                try:
                    # Use Gemini API
                    genai = self.generator["client"]
                    model_name = self.generator["model"]

                    # Create a generative model
                    model = genai.GenerativeModel(model_name)

                    # Generate content with timeout
                    print("Sending test request to Gemini API...")

                    # Set a timeout for the test
                    import threading
                    import time

                    result = ["No response received yet"]
                    generation_complete = [False]

                    def generate_with_timeout():
                        try:
                            print("Starting Gemini API test request...")
                            response = model.generate_content(test_prompt)
                            print(f"Received response from Gemini API: {response}")

                            if response and hasattr(response, "text"):
                                result[0] = response.text
                                print(f"Extracted text from response: {result[0]}")
                            else:
                                result[0] = "No text in Gemini API response"
                                print("Response object has no text attribute")

                            generation_complete[0] = True
                        except Exception as e:
                            print(f"Error in Gemini test generation: {e}")
                            result[0] = f"Error: {str(e)}"
                            generation_complete[0] = True

                    # Start generation in a separate thread
                    generation_thread = threading.Thread(target=generate_with_timeout)
                    generation_thread.daemon = True
                    generation_thread.start()

                    # Wait for up to 10 seconds
                    timeout = 10
                    start_time = time.time()
                    while (
                        not generation_complete[0]
                        and time.time() - start_time < timeout
                    ):
                        print(
                            f"Waiting for Gemini API response... ({int(time.time() - start_time)}s)"
                        )
                        time.sleep(1)

                    if not generation_complete[0]:
                        print("Gemini API test request timed out")
                        return "Gemini API test timed out after 10 seconds"

                    print(f"Test response from Gemini API: {result[0]}")
                    return f"Gemini API test successful: {result[0]}"
                except Exception as e:
                    print(f"Error testing Gemini API: {e}")
                    return f"Gemini API test failed: {str(e)}"

            elif (
                isinstance(self.generator, dict)
                and self.generator.get("type") == "huggingface"
            ):
                # Use Hugging Face pipeline
                pipeline = self.generator["pipeline"]
                response = pipeline(test_prompt, max_new_tokens=30, do_sample=True)
                full_text = response[0]["generated_text"]

                if len(test_prompt) < len(full_text):
                    result = full_text[len(test_prompt) :].strip()

                    # Check if this is a small model that needs cleaning
                    is_small_model = any(
                        name in self.model_name.lower()
                        for name in ["distilgpt2", "gpt2-small", "tiny"]
                    )
                    if is_small_model:
                        result = self._clean_small_model_response(result)
                else:
                    result = "No additional text generated"

                print(f"Test response from Hugging Face: {result}")
                return f"Hugging Face model test successful: {result}"

            else:
                # Legacy format (for backward compatibility)
                response = self.generator(
                    test_prompt, max_new_tokens=30, do_sample=True
                )
                full_text = response[0]["generated_text"]

                if len(test_prompt) < len(full_text):
                    result = full_text[len(test_prompt) :].strip()

                    # Check if this is a small model that needs cleaning
                    is_small_model = any(
                        name in self.model_name.lower()
                        for name in ["distilgpt2", "gpt2-small", "tiny"]
                    )
                    if is_small_model:
                        result = self._clean_small_model_response(result)
                else:
                    result = "No additional text generated"

                print(f"Test response: {result}")
                return f"Model test successful: {result}"

        except Exception as e:
            print(f"Error testing model: {e}")
            return f"Model test failed: {str(e)}"

    def generate_suggestion(
        self,
        person_context: Dict[str, Any],
        user_input: Optional[str] = None,
        max_length: int = 50,
        temperature: float = 0.7,
    ) -> str:
        """Generate a contextually appropriate suggestion.

        Args:
            person_context: Context information about the person
            user_input: Optional user input to consider
            max_length: Maximum length of the generated suggestion
            temperature: Controls randomness in generation (higher = more random)

        Returns:
            A generated suggestion string
        """
        if not self.model_loaded:
            # Use fallback responses if model isn't loaded
            import random

            print("Model not loaded, using fallback responses")
            return random.choice(self.fallback_responses)

        # Extract context information
        name = person_context.get("name", "")
        role = person_context.get("role", "")
        topics = person_context.get("topics", [])
        context = person_context.get("context", "")
        selected_topic = person_context.get("selected_topic", "")
        common_phrases = person_context.get("common_phrases", [])
        frequency = person_context.get("frequency", "")
        mood = person_context.get("mood", 3)  # Default to neutral mood (3)

        # Get AAC user information
        aac_user = self.aac_user_info

        # Build enhanced prompt
        prompt = f"""I am {aac_user.get('name', 'Will')}, a {aac_user.get('age', 38)}-year-old with MND (Motor Neuron Disease) from {aac_user.get('location', 'Manchester')}.
{aac_user.get('background', '')}

My communication needs: {aac_user.get('communication_needs', '')}

I am talking to {name}, who is my {role}.
About {name}: {context}
We typically talk about: {', '.join(topics)}
We communicate {frequency}.

My current mood: {self._get_mood_description(mood)}
"""

        # Add communication style based on relationship
        if role in ["wife", "son", "daughter", "mother", "father"]:
            prompt += "I communicate with my family in a warm, loving way, sometimes using inside jokes.\n"
        elif role in ["doctor", "therapist", "nurse"]:
            prompt += "I communicate with healthcare providers in a direct, informative way.\n"
        elif role in ["best mate", "friend"]:
            prompt += "I communicate with friends casually, often with humor and sometimes swearing.\n"
        elif role in ["work colleague", "boss"]:
            prompt += (
                "I communicate with colleagues professionally but still friendly.\n"
            )

        # Add topic information if provided
        if selected_topic:
            prompt += f"\nWe are currently discussing {selected_topic}.\n"

            # Add specific context about this topic with this person
            if selected_topic == "football" and "Manchester United" in context:
                prompt += "We both support Manchester United and often discuss recent matches.\n"
            elif selected_topic == "programming" and "software developer" in context:
                prompt += "We both work in software development and share technical interests.\n"
            elif selected_topic == "family plans" and role in ["wife", "husband"]:
                prompt += (
                    "We make family decisions together, considering my condition.\n"
                )
            elif selected_topic == "old scout adventures" and role == "best mate":
                prompt += "We often reminisce about our Scout camping trips in South East London.\n"
            elif selected_topic == "cycling" and "cycling" in context:
                prompt += "I miss being able to cycle but enjoy talking about past cycling adventures.\n"

        # Add the user's message if provided, or set up for conversation initiation
        if user_input:
            # If user input is provided, we're responding to something
            prompt += f'\n{name} just said to me: "{user_input}"\n'
            prompt += f"I want to respond directly to what {name} just said.\n"
        else:
            # No user input means we're initiating a conversation
            if selected_topic:
                # If a topic is selected, initiate conversation about that topic
                prompt += f"\nI'm about to start a conversation with {name} about {selected_topic}.\n"

                # Add specific context about initiating this topic with this person
                if selected_topic == "football" and "Manchester United" in context:
                    prompt += (
                        "We both support Manchester United and often discuss matches.\n"
                    )
                elif selected_topic == "family" and role in [
                    "wife",
                    "husband",
                    "son",
                    "daughter",
                ]:
                    prompt += (
                        "I want to check in about our family plans or activities.\n"
                    )
                elif selected_topic == "health" and role in [
                    "doctor",
                    "nurse",
                    "therapist",
                ]:
                    prompt += "I want to discuss my health condition or symptoms.\n"
                elif selected_topic == "work" and role in ["work colleague", "boss"]:
                    prompt += "I want to discuss a work-related matter.\n"

                prompt += f"I want to initiate a conversation about {selected_topic} in a natural way.\n"
            elif common_phrases:
                # Use context about our typical conversations if no specific topic
                prompt += f"\nI'm about to start a conversation with {name}.\n"
                default_message = common_phrases[0]
                prompt += f'{name} typically says things like: "{default_message}"\n'
                prompt += f"We typically talk about: {', '.join(topics)}\n"
                prompt += "I want to initiate a conversation in a natural way based on our relationship.\n"
            else:
                # Generic conversation starter
                prompt += f"\nI'm about to start a conversation with {name}.\n"
                prompt += "I want to initiate a conversation in a natural way based on our relationship.\n"

        # Add the response prompt with specific guidance
        # Check if this is an instruction-tuned model
        is_instruction_model = any(
            marker in self.model_name.lower()
            for marker in ["-it", "instruct", "chat", "phi-3", "phi-2"]
        )

        # Check if this is a very small model that needs simpler prompts
        is_small_model = any(
            name in self.model_name.lower()
            for name in ["distilgpt2", "gpt2-small", "tiny"]
        )

        if is_small_model:
            # Use a much simpler format for very small models
            if user_input:
                # Responding to something
                prompt += f"""
{name} said: "{user_input}"

Will's response:"""
            else:
                # Initiating a conversation
                if selected_topic:
                    prompt += f"""
Will starts a conversation with {name} about {selected_topic}.

Will says:"""
                else:
                    prompt += f"""
Will starts a conversation with {name}.

Will says:"""
        elif is_instruction_model:
            # Use instruction format for instruction-tuned models
            if user_input:
                # Responding to something
                prompt += f"""
<instruction>
I am Will, the person with MND. I need to respond to {name}'s message: "{user_input}"
My response should be natural, brief (1-2 sentences), and directly relevant to what {name} just said.
I should use language appropriate for our relationship.
I should speak in first person as myself (Will).
</instruction>

My response to {name}:"""
            else:
                # Initiating a conversation
                prompt += f"""
<instruction>
I am Will, the person with MND. I need to start a conversation with {name}.
My conversation starter should be natural, brief (1-2 sentences), and appropriate for our relationship.
If a topic was selected, I should focus on that topic.
I should speak in first person as myself (Will).
</instruction>

My conversation starter to {name}:"""
        else:
            # Use standard format for other models
            if user_input:
                # Responding to something
                prompt += f"""
I am Will, the person with MND. I want to respond to {name}'s message: "{user_input}"
My response should be natural, brief (1-2 sentences), and directly relevant to what {name} just said.
I'll use language appropriate for our relationship and speak as myself (Will).

My response to {name}:"""
            else:
                # Initiating a conversation
                prompt += f"""
I am Will, the person with MND. I want to start a conversation with {name}.
My conversation starter should be natural, brief (1-2 sentences), and appropriate for our relationship.
I'll speak in first person as myself (Will).

My conversation starter to {name}:"""

        # Generate suggestion
        try:
            print(f"Generating suggestion with prompt: {prompt}")

            # Check if we're using the Gemini API or a Hugging Face model
            if (
                isinstance(self.generator, dict)
                and self.generator.get("type") == "gemini-api"
            ):
                try:
                    # Use Gemini API
                    try:
                        genai = self.generator["client"]
                        model_name = self.generator["model"]

                        # Create a generative model
                        model = genai.GenerativeModel(model_name)

                        # Set generation config
                        generation_config = {
                            "temperature": temperature,
                            "top_p": 0.92,
                            "top_k": 50,
                            "max_output_tokens": 100,
                        }

                        # Generate content with timeout

                        result = [
                            "I'm thinking about what to say..."
                        ]  # Default response
                        generation_complete = [False]

                        def generate_with_gemini():
                            try:
                                response = model.generate_content(
                                    prompt, generation_config=generation_config
                                )

                                if response and hasattr(response, "text"):
                                    result[0] = response.text.strip()
                                    print(f"Gemini API response: {result[0]}")
                                else:
                                    print("No response from Gemini API")

                                generation_complete[0] = True
                            except Exception as e:
                                print(f"Error in Gemini generation thread: {e}")
                                generation_complete[0] = True

                        # Start generation in a separate thread
                        generation_thread = threading.Thread(
                            target=generate_with_gemini
                        )
                        generation_thread.daemon = True
                        generation_thread.start()

                        # Wait for up to 10 seconds
                        timeout = 10
                        start_time = time.time()
                        while (
                            not generation_complete[0]
                            and time.time() - start_time < timeout
                        ):
                            time.sleep(0.1)

                        if not generation_complete[0]:
                            print("Gemini API request timed out")
                            return "I'm thinking about what to say... (API timeout)"

                        return result[0]
                    except Exception as e:
                        print(f"Error setting up Gemini API: {e}")
                        return (
                            "I'm having trouble connecting to the Gemini API right now."
                        )

                except Exception as e:
                    print(f"Error generating with Gemini API: {e}")
                    return "Could not generate a suggestion with Gemini API. Please try again."

            elif (
                isinstance(self.generator, dict)
                and self.generator.get("type") == "huggingface"
            ):
                # Use Hugging Face pipeline
                pipeline = self.generator["pipeline"]

                # Generate with Hugging Face
                response = pipeline(
                    prompt,
                    max_new_tokens=100,  # Generate more tokens to ensure we get a response
                    temperature=temperature,
                    do_sample=True,
                    top_p=0.92,
                    top_k=50,
                    truncation=False,
                )

                # Extract only the generated part, not the prompt
                full_text = response[0]["generated_text"]
                print(f"Full generated text length: {len(full_text)}")
                print(f"Prompt length: {len(prompt)}")

                # Make sure we're not trying to slice beyond the text length
                if len(prompt) < len(full_text):
                    result = full_text[len(prompt) :].strip()

                    # Post-process the result for small models
                    if is_small_model:
                        result = self._clean_small_model_response(result)

                    print(f"Generated response: {result}")
                    return result
                else:
                    # If the model didn't generate anything beyond the prompt
                    print("Model didn't generate text beyond prompt")
                    return "I'm thinking about what to say..."

            else:
                # Legacy format (for backward compatibility)
                response = self.generator(
                    prompt,
                    max_new_tokens=100,
                    temperature=temperature,
                    do_sample=True,
                    top_p=0.92,
                    top_k=50,
                    truncation=False,
                )

                # Extract only the generated part, not the prompt
                full_text = response[0]["generated_text"]
                print(f"Full generated text length: {len(full_text)}")
                print(f"Prompt length: {len(prompt)}")

                # Make sure we're not trying to slice beyond the text length
                if len(prompt) < len(full_text):
                    result = full_text[len(prompt) :].strip()

                    # Post-process the result for small models
                    if is_small_model:
                        result = self._clean_small_model_response(result)

                    print(f"Generated response: {result}")
                    return result
                else:
                    # If the model didn't generate anything beyond the prompt
                    print("Model didn't generate text beyond prompt")
                    return "I'm thinking about what to say..."

        except Exception as e:
            print(f"Error generating suggestion: {e}")
            return "Could not generate a suggestion. Please try again."