File size: 15,226 Bytes
36fcf07
 
 
 
 
 
1d94515
36fcf07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d94515
 
 
 
 
 
36fcf07
 
 
 
 
 
 
1d94515
 
 
 
36fcf07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5cc3fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36fcf07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d19e58
36fcf07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
"""
LLM Interface for the AAC app using Simon Willison's LLM library.
"""

import subprocess
import time
import datetime
from typing import List, Optional, Dict, Any


class LLMInterface:
    """Interface for Simon Willison's LLM tool."""

    def __init__(
        self,
        model_name: str = "gemini-1.5-flash",
        max_length: int = 150,
        temperature: float = 0.7,
    ):
        """Initialize the LLM interface.

        Args:
            model_name: Name of the model to use
            max_length: Maximum length of generated text
            temperature: Controls randomness (higher = more random)
        """
        self.model_name = model_name
        self.max_length = max_length
        self.temperature = temperature
        self.model_loaded = self._check_llm_installed()
        self.fallback_responses = [
            "I'm not sure how to respond to that.",
            "That's interesting. Tell me more.",
            "I'd like to talk about that further.",
            "I appreciate you sharing that with me.",
            "Could we talk about something else?",
            "I need some time to think about that.",
        ]

    def _check_llm_installed(self) -> bool:
        """Check if the LLM tool is installed and working."""
        try:
            result = subprocess.run(
                ["llm", "--version"],
                capture_output=True,
                text=True,
                timeout=5,  # Add a timeout to prevent hanging
            )
            if result.returncode == 0:
                print(f"LLM tool is installed: {result.stdout.strip()}")

                # Also check if the model exists
                try:
                    # Just check if the model is in the list of available models
                    model_check = subprocess.run(
                        ["llm", "models"],
                        capture_output=True,
                        text=True,
                        timeout=5,
                    )

                    if model_check.returncode == 0:
                        if self.model_name in model_check.stdout:
                            print(f"Model {self.model_name} is available")
                            return True
                        else:
                            print(
                                f"Model {self.model_name} not found in available models"
                            )
                            # Try to find similar models
                            if "gemini" in self.model_name.lower():
                                print("Available Gemini models:")
                                for line in model_check.stdout.splitlines():
                                    if "gemini" in line.lower():
                                        print(f"  {line}")
                            return False
                    else:
                        print("Error checking available models")
                        return False

                except Exception as model_error:
                    print(f"Error checking model availability: {model_error}")
                    return False
            else:
                print("LLM tool returned an error.")
                return False
        except subprocess.TimeoutExpired:
            print("Timeout checking LLM tool installation")
            return False
        except Exception as e:
            print(f"Error checking LLM tool: {e}")
            return False

    def _get_max_tokens_param(self) -> str:
        """Get the appropriate max tokens parameter name for the model."""
        if "gemini" in self.model_name.lower():
            return "max_output_tokens"
        else:
            return "max_tokens"

    def generate_suggestion(
        self,
        person_context: Dict[str, Any],
        user_input: Optional[str] = None,
        temperature: Optional[float] = None,
        progress_callback=None,
    ) -> str:
        """Generate a suggestion based on the person context and user input.

        Args:
            person_context: Context information about the person
            user_input: Optional user input to consider
            temperature: Controls randomness in generation (higher = more random)
            progress_callback: Optional callback function to report progress

        Returns:
            A generated suggestion string
        """
        if not self.model_loaded:
            import random

            return random.choice(self.fallback_responses)

        # Extract context information
        name = person_context.get("name", "")
        role = person_context.get("role", "")
        topics = person_context.get("topics", [])
        context = person_context.get("context", "")
        selected_topic = person_context.get("selected_topic", "")
        common_phrases = person_context.get("common_phrases", [])
        frequency = person_context.get("frequency", "")
        mood = person_context.get("mood", 3)  # Default to neutral mood (3)

        # Get mood description
        mood_descriptions = {
            1: "I'm feeling quite down and sad today. My responses might be more subdued.",
            2: "I'm feeling a bit low today. I might be less enthusiastic than usual.",
            3: "I'm feeling okay today - neither particularly happy nor sad.",
            4: "I'm feeling pretty good today. I'm in a positive mood.",
            5: "I'm feeling really happy and upbeat today! I'm in a great mood.",
        }
        mood_description = mood_descriptions.get(mood, mood_descriptions[3])

        # Get current date and time
        current_datetime = datetime.datetime.now()
        current_time = current_datetime.strftime("%I:%M %p")  # e.g., 02:30 PM
        current_day = current_datetime.strftime("%A")  # e.g., Monday
        current_date = current_datetime.strftime("%B %d, %Y")  # e.g., January 01, 2023

        # Build enhanced prompt
        prompt = f"""I am Will, a 38-year-old with MND (Motor Neuron Disease) from Manchester.
I am talking to {name}, who is my {role}.
About {name}: {context}
We typically talk about: {', '.join(topics)}
We communicate {frequency}.

Current time: {current_time}
Current day: {current_day}
Current date: {current_date}

My current mood: {mood_description}
"""

        # Add communication style based on relationship
        if role in ["wife", "son", "daughter", "mother", "father"]:
            prompt += "I communicate with my family in a warm, loving way, sometimes using inside jokes.\n"
        elif role in ["doctor", "therapist", "nurse"]:
            prompt += "I communicate with healthcare providers in a direct, informative way.\n"
        elif role in ["best mate", "friend"]:
            prompt += "I communicate with friends casually, often with humor and sometimes swearing.\n"
        elif role in ["work colleague", "boss"]:
            prompt += (
                "I communicate with colleagues professionally but still friendly.\n"
            )

        # Add topic information if provided
        if selected_topic:
            prompt += f"\nWe are currently discussing {selected_topic}.\n"

        # Add conversation history if available
        conversation_history = person_context.get("conversation_history", [])
        if conversation_history:
            # Get the two most recent conversations
            recent_conversations = sorted(
                conversation_history, key=lambda x: x.get("timestamp", ""), reverse=True
            )[:2]

            if recent_conversations:
                prompt += "\nOur recent conversations:\n"

                for i, conversation in enumerate(recent_conversations):
                    # Format the timestamp
                    timestamp = conversation.get("timestamp", "")
                    try:
                        dt = datetime.datetime.fromisoformat(timestamp)
                        formatted_date = dt.strftime("%B %d at %I:%M %p")
                    except (ValueError, TypeError):
                        formatted_date = timestamp

                    prompt += f"\nConversation on {formatted_date}:\n"

                    # Add the messages
                    messages = conversation.get("messages", [])
                    for message in messages:
                        speaker = message.get("speaker", "Unknown")
                        text = message.get("text", "")
                        prompt += f'{speaker}: "{text}"\n'

        # Add the user's message if provided, or set up for conversation initiation
        if user_input:
            # If user input is provided, we're responding to something
            prompt += f'\n{name} just said to me: "{user_input}"\n'
            prompt += f"I want to respond directly to what {name} just said.\n"
        else:
            # No user input means we're initiating a conversation
            if selected_topic:
                # If a topic is selected, initiate conversation about that topic
                prompt += f"\nI'm about to start a conversation with {name} about {selected_topic}.\n"
                prompt += f"I want to initiate a conversation about {selected_topic} in a natural way.\n"
            else:
                # Generic conversation starter
                prompt += f"\nI'm about to start a conversation with {name}.\n"
                prompt += "I want to initiate a conversation in a natural way based on our relationship.\n"

        # Add the response prompt with specific guidance
        if user_input:
            # Responding to something
            prompt += f"""
I am Will, the person with MND. I want to respond to {name}'s message: "{user_input}"
My response should be natural, brief (1-2 sentences), and directly relevant to what {name} just said.
I'll use language appropriate for our relationship and speak as myself (Will).

My response to {name}:"""
        else:
            # Initiating a conversation
            prompt += f"""
I am Will, the person with MND. I want to start a conversation with {name}.
My conversation starter should be natural, brief (1-2 sentences), and appropriate for our relationship.
I'll speak in first person as myself (Will).

My conversation starter to {name}:"""

        # Use the provided temperature or default
        temp = temperature if temperature is not None else self.temperature

        # Update progress if callback provided
        if progress_callback:
            progress_callback(0.3, desc="Sending prompt to LLM...")

        try:
            # Get the appropriate max tokens parameter
            max_tokens_param = self._get_max_tokens_param()

            # Call the LLM tool
            result = subprocess.run(
                [
                    "llm",
                    "-m",
                    self.model_name,
                    "-s",
                    f"temperature={temp}",
                    "-s",
                    f"{max_tokens_param}={self.max_length}",
                    prompt,
                ],
                capture_output=True,
                text=True,
                timeout=30,  # Increase timeout for Gemini API calls
            )

            if progress_callback:
                progress_callback(0.7, desc="Processing response...")

            if result.returncode == 0:
                # Get the generated text
                generated = result.stdout.strip()

                # Clean up the response if needed
                if not generated:
                    generated = "I'm not sure what to say about that."

                if progress_callback:
                    progress_callback(0.9, desc="Response generated successfully")

                return generated
            else:
                print(f"Error from LLM tool: {result.stderr}")
                if progress_callback:
                    progress_callback(0.9, desc="Error generating response")
                return "I'm having trouble responding to that right now."
        except subprocess.TimeoutExpired:
            print("LLM generation timed out")
            if progress_callback:
                progress_callback(0.9, desc="Generation timed out")
            return "I need more time to think about that."
        except Exception as e:
            print(f"Error generating with LLM tool: {e}")
            if progress_callback:
                progress_callback(0.9, desc="Error generating response")
            return "I'm having trouble responding to that."

    def generate_multiple_suggestions(
        self,
        person_context: Dict[str, Any],
        user_input: Optional[str] = None,
        num_suggestions: int = 3,
        temperature: Optional[float] = None,
        progress_callback=None,
    ) -> List[str]:
        """Generate multiple suggestions.

        Args:
            person_context: Context information about the person
            user_input: Optional user input to consider
            num_suggestions: Number of suggestions to generate
            temperature: Controls randomness in generation
            progress_callback: Optional callback function to report progress

        Returns:
            A list of generated suggestions
        """
        suggestions = []

        for i in range(num_suggestions):
            if progress_callback:
                progress_callback(
                    0.1 + (i * 0.3),
                    desc=f"Generating suggestion {i+1}/{num_suggestions}",
                )

            # Vary temperature slightly for each suggestion to increase diversity
            temp_variation = 0.05 * (i - 1)  # -0.05, 0, 0.05
            temp = (
                temperature if temperature is not None else self.temperature
            ) + temp_variation

            suggestion = self.generate_suggestion(
                person_context,
                user_input,
                temperature=temp,
                progress_callback=lambda p, desc: (
                    progress_callback(0.1 + (i * 0.3) + (p * 0.3), desc=desc)
                    if progress_callback
                    else None
                ),
            )

            suggestions.append(suggestion)

            # Small delay to ensure UI updates
            time.sleep(0.2)

        return suggestions

    def test_model(self) -> str:
        """Test if the model is working correctly."""
        if not self.model_loaded:
            return "LLM tool not available"

        try:
            # Create a simple test prompt
            test_prompt = "Say hello in one word."

            # Call the LLM tool
            result = subprocess.run(
                [
                    "llm",
                    "-m",
                    self.model_name,
                    "-s",
                    "temperature=0.7",
                    test_prompt,
                ],
                capture_output=True,
                text=True,
                timeout=10,
            )

            if result.returncode == 0:
                response = result.stdout.strip()
                return f"LLM test successful: {response}"
            else:
                return f"LLM test failed: {result.stderr}"
        except Exception as e:
            return f"LLM test error: {str(e)}"