File size: 28,770 Bytes
deb6f27 f5b302e b929813 f5b302e deb6f27 b929813 f5b302e b929813 f5b302e b929813 f5b302e b929813 deb6f27 b929813 f5b302e b929813 fa1bef5 b929813 deb6f27 b929813 fa1bef5 b929813 fa1bef5 b929813 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 |
from transformers import pipeline
import json
import argparse
import os
import sys
import subprocess
import requests
from typing import List, Dict, Any, Optional, Union
import time
# Check for Hugging Face token
def check_hf_token():
"""Check if a Hugging Face token is properly set up."""
token = os.environ.get("HUGGING_FACE_HUB_TOKEN") or os.environ.get("HF_TOKEN")
if not token:
print("\nWarning: No Hugging Face token found in environment variables.")
print(
"To use gated models like Gemma, you need to set up a token with the right permissions."
)
print("1. Create a token at https://huggingface.co/settings/tokens")
print("2. Make sure to enable 'Access to public gated repositories'")
print("3. Set it as an environment variable:")
print(" export HUGGING_FACE_HUB_TOKEN=your_token_here")
return False
return True
def load_social_graph(file_path="social_graph.json"):
"""Load the social graph from a JSON file."""
with open(file_path, "r") as f:
return json.load(f)
def get_person_info(social_graph, person_id):
"""Get information about a person from the social graph."""
if person_id in social_graph["people"]:
return social_graph["people"][person_id]
else:
available_people = ", ".join(social_graph["people"].keys())
raise ValueError(
f"Person '{person_id}' not found in social graph. Available people: {available_people}"
)
def build_enhanced_prompt(social_graph, person_id, topic=None, user_message=None):
"""Build an enhanced prompt using social graph information."""
# Get AAC user information
aac_user = social_graph["aac_user"]
# Get conversation partner information
person = get_person_info(social_graph, person_id)
# Start building the prompt with AAC user information
prompt = f"""I am {aac_user['name']}, a {aac_user['age']}-year-old with MND (Motor Neuron Disease) from {aac_user['location']}.
{aac_user['background']}
My communication needs: {aac_user['communication_needs']}
I am talking to {person['name']}, who is my {person['role']}.
About {person['name']}: {person['context']}
We typically talk about: {', '.join(person['topics'])}
We communicate {person['frequency']}.
"""
# Add places information if available
if "places" in social_graph:
relevant_places = social_graph["places"][
:3
] # Just use a few places for context
prompt += f"\nPlaces important to me: {', '.join(relevant_places)}\n"
# Add communication style based on relationship
if person["role"] in ["wife", "son", "daughter", "mother", "father"]:
prompt += "I communicate with my family in a warm, loving way, sometimes using inside jokes.\n"
elif person["role"] in ["doctor", "therapist", "nurse"]:
prompt += (
"I communicate with healthcare providers in a direct, informative way.\n"
)
elif person["role"] in ["best mate", "friend"]:
prompt += "I communicate with friends casually, often with humor and sometimes swearing.\n"
elif person["role"] in ["work colleague", "boss"]:
prompt += "I communicate with colleagues professionally but still friendly.\n"
# Add common utterances by category if available
if "common_utterances" in social_graph:
# Try to find relevant utterance category based on topic
utterance_category = None
if topic == "football" or topic == "sports":
utterance_category = "sports_talk"
elif topic == "programming" or topic == "tech news":
utterance_category = "tech_talk"
elif topic in ["family plans", "children's activities"]:
utterance_category = "family_talk"
# Add relevant utterances if category exists
if (
utterance_category
and utterance_category in social_graph["common_utterances"]
):
utterances = social_graph["common_utterances"][utterance_category][:2]
prompt += f"\nI might say things like: {' or '.join(utterances)}\n"
# Add topic information if provided
if topic and topic in person["topics"]:
prompt += f"\nWe are currently discussing {topic}.\n"
# Add specific context about this topic with this person
if topic == "football" and "Manchester United" in person["context"]:
prompt += (
"We both support Manchester United and often discuss recent matches.\n"
)
elif topic == "programming" and "software developer" in person["context"]:
prompt += (
"We both work in software development and share technical interests.\n"
)
elif topic == "family plans" and person["role"] in ["wife", "husband"]:
prompt += "We make family decisions together, considering my condition.\n"
elif topic == "old scout adventures" and person["role"] == "best mate":
prompt += "We often reminisce about our Scout camping trips in South East London.\n"
elif topic == "cycling" and "cycling" in person["context"]:
prompt += "I miss being able to cycle but enjoy talking about past cycling adventures.\n"
# Add shared experiences based on relationship and topic
if person["role"] == "best mate" and topic in ["football", "pub quizzes"]:
prompt += (
"We've watched many matches together and done countless pub quizzes.\n"
)
elif person["role"] == "wife" and topic in ["family plans", "weekend outings"]:
prompt += "Emma has been amazing at keeping family life as normal as possible despite my condition.\n"
elif person["role"] == "son" and topic == "football":
prompt += "I try to stay engaged with Billy's football enthusiasm even as my condition progresses.\n"
# Add the user's message if provided
if user_message:
prompt += f"\n{person['name']} just said to me: \"{user_message}\"\n"
else:
# Use a common phrase from the person if no message is provided
if person["common_phrases"]:
default_message = person["common_phrases"][0]
prompt += f"\n{person['name']} just said to me: \"{default_message}\"\n"
# Add the response prompt with specific guidance
prompt += f"""
I want to respond to {person['name']} in a way that is natural, brief (1-2 sentences), and directly relevant to what they just said. I'll use casual language with some humor since we're close friends.
My response to {person['name']}:"""
return prompt
class LLMInterface:
"""Base interface for language model generation."""
def __init__(self, model_name, max_length=150, temperature=0.9):
"""Initialize the LLM interface.
Args:
model_name: Name or path of the model
max_length: Maximum length of generated text
temperature: Controls randomness (higher = more random)
"""
self.model_name = model_name
self.max_length = max_length
self.temperature = temperature
def generate(self, prompt, num_responses=3):
"""Generate responses for the given prompt.
Args:
prompt: The prompt to generate responses for
num_responses: Number of responses to generate
Returns:
A list of generated responses
"""
raise NotImplementedError("Subclasses must implement this method")
def cleanup_response(self, text):
"""Clean up a generated response.
Args:
text: The raw generated text
Returns:
Cleaned up text
"""
# Make sure it's a complete sentence or phrase
# If it ends abruptly, add an ellipsis
if text and not any(text.endswith(end) for end in [".", "!", "?", '..."']):
if text.endswith('"'):
text = text[:-1] + '..."'
else:
text += "..."
return text
class HuggingFaceInterface(LLMInterface):
"""Interface for Hugging Face Transformers models."""
def __init__(self, model_name="distilgpt2", max_length=150, temperature=0.9):
"""Initialize the Hugging Face interface."""
super().__init__(model_name, max_length, temperature)
try:
# Check if we're dealing with a gated model
is_gated_model = any(
name in model_name for name in ["gemma", "llama", "mistral"]
)
# Get token from environment
import os
token = os.environ.get("HUGGING_FACE_HUB_TOKEN") or os.environ.get(
"HF_TOKEN"
)
if is_gated_model and token:
print(f"Using token for gated model: {model_name}")
from huggingface_hub import login
login(token=token, add_to_git_credential=False)
# Explicitly pass token to pipeline
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained(model_name, token=token)
model = AutoModelForCausalLM.from_pretrained(model_name, token=token)
self.pipeline = pipeline(
"text-generation", model=model, tokenizer=tokenizer
)
else:
self.pipeline = pipeline("text-generation", model=model_name)
print(f"Successfully loaded model: {model_name}")
except Exception as e:
print(f"Error loading model {model_name}: {e}")
if "gated" in str(e).lower() or "403" in str(e):
print(
"\nThis appears to be a gated model that requires authentication."
)
print("Please make sure you:")
print("1. Have accepted the model license on the Hugging Face Hub")
print(
"2. Have created a token with 'Access to public gated repositories' permission"
)
print(
"3. Have set the token as HUGGING_FACE_HUB_TOKEN environment variable"
)
print("\nAlternatively, try using the Ollama backend:")
print(
f"python demo.py --backend ollama --model gemma:7b-it [other args]"
)
raise
def generate(self, prompt, num_responses=3):
"""Generate responses using the Hugging Face pipeline."""
# Calculate prompt length in tokens (approximate)
prompt_length = len(prompt.split())
# Generate the responses
responses = self.pipeline(
prompt,
max_length=prompt_length + self.max_length,
temperature=self.temperature,
do_sample=True,
num_return_sequences=num_responses,
top_p=0.92,
top_k=50,
truncation=True,
)
# Extract just the generated parts (not the prompt)
generated_texts = []
for resp in responses:
# Get the text after the prompt
generated = resp["generated_text"][len(prompt) :].strip()
# Clean up the response
generated = self.cleanup_response(generated)
# Add to our list if it's not empty
if generated:
generated_texts.append(generated)
return generated_texts
class OllamaInterface(LLMInterface):
"""Interface for Ollama models."""
def __init__(self, model_name="gemma:7b", max_length=150, temperature=0.9):
"""Initialize the Ollama interface."""
super().__init__(model_name, max_length, temperature)
# Check if Ollama is installed and the model is available
try:
import requests
response = requests.get("http://localhost:11434/api/tags")
if response.status_code == 200:
models = [model["name"] for model in response.json()["models"]]
if model_name not in models:
print(
f"Warning: Model {model_name} not found in Ollama. Available models: {', '.join(models)}"
)
print(f"You may need to run: ollama pull {model_name}")
print(f"Ollama is available and will use model: {model_name}")
except Exception as e:
print(f"Warning: Ollama may not be installed or running: {e}")
print("You can install Ollama from https://ollama.ai/")
def generate(self, prompt, num_responses=3):
"""Generate responses using Ollama API."""
import requests
generated_texts = []
for _ in range(num_responses):
try:
response = requests.post(
"http://localhost:11434/api/generate",
json={
"model": self.model_name,
"prompt": prompt,
"temperature": self.temperature,
"max_tokens": self.max_length,
},
stream=False,
)
if response.status_code == 200:
# Extract the generated text
generated = response.json().get("response", "").strip()
# Clean up the response
generated = self.cleanup_response(generated)
# Add to our list if it's not empty
if generated:
generated_texts.append(generated)
else:
print(f"Error from Ollama API: {response.text}")
except Exception as e:
print(f"Error generating with Ollama: {e}")
return generated_texts
class LLMToolInterface(LLMInterface):
"""Interface for Simon Willison's LLM tool."""
def __init__(
self, model_name="gemini-1.5-pro-latest", max_length=150, temperature=0.9
):
"""Initialize the LLM tool interface."""
super().__init__(model_name, max_length, temperature)
# Check if LLM tool is installed
try:
import subprocess
result = subprocess.run(["llm", "models"], capture_output=True, text=True)
if result.returncode == 0:
models = [
line.strip() for line in result.stdout.split("\n") if line.strip()
]
print(f"LLM tool is available. Found {len(models)} models.")
# Check for specific model types
gemini_models = [
m for m in models if "gemini" in m.lower() or "gemma" in m.lower()
]
if gemini_models:
print(f"Gemini models available: {', '.join(gemini_models[:3])}...")
# Check for Ollama models
ollama_models = [m for m in models if "ollama" in m.lower()]
if ollama_models:
print(f"Ollama models available: {', '.join(ollama_models[:3])}...")
# Check for MLX models
mlx_models = [m for m in models if "mlx" in m.lower()]
if mlx_models:
print(f"MLX models available: {', '.join(mlx_models[:3])}...")
# Check if the specified model is available
if not any(self.model_name in m for m in models):
print(
f"Warning: Model '{self.model_name}' not found in available models."
)
print("You may need to install the appropriate plugin:")
if (
"gemini" in self.model_name.lower()
or "gemma" in self.model_name.lower()
):
print("llm install llm-gemini")
elif "mlx" in self.model_name.lower():
print("llm install llm-mlx")
elif "ollama" in self.model_name.lower():
print("llm install llm-ollama")
model_name = self.model_name
if "/" in model_name:
model_name = model_name.split("/")[1]
print("ollama pull " + model_name)
else:
print("Warning: LLM tool may be installed but returned an error.")
except Exception as e:
print(f"Warning: Simon Willison's LLM tool may not be installed: {e}")
print("You can install it with: pip install llm")
def generate(self, prompt, num_responses=3):
"""Generate responses using the LLM tool."""
import subprocess
import os
# Check for required environment variables
if "gemini" in self.model_name.lower() or "gemma" in self.model_name.lower():
if not os.environ.get("GEMINI_API_KEY"):
print("Warning: GEMINI_API_KEY environment variable not found.")
print("Gemini API may not work without it.")
elif "ollama" in self.model_name.lower():
# Check if Ollama is running
try:
import requests
response = requests.get("http://localhost:11434/api/tags", timeout=2)
if response.status_code != 200:
print("Warning: Ollama server doesn't seem to be running.")
print("Start Ollama with: ollama serve")
except Exception:
print("Warning: Ollama server doesn't seem to be running.")
print("Start Ollama with: ollama serve")
# Determine the appropriate parameter name for max tokens
if "gemini" in self.model_name.lower() or "gemma" in self.model_name.lower():
max_tokens_param = "max_output_tokens"
elif "ollama" in self.model_name.lower():
max_tokens_param = "num_predict"
else:
max_tokens_param = "max_tokens"
generated_texts = []
for _ in range(num_responses):
try:
# Call the LLM tool
result = subprocess.run(
[
"llm",
"-m",
self.model_name,
"-s",
f"temperature={self.temperature}",
"-s",
f"{max_tokens_param}={self.max_length}",
prompt,
],
capture_output=True,
text=True,
)
if result.returncode == 0:
# Get the generated text
generated = result.stdout.strip()
# Clean up the response
generated = self.cleanup_response(generated)
# Add to our list if it's not empty
if generated:
generated_texts.append(generated)
else:
print(f"Error from LLM tool: {result.stderr}")
except Exception as e:
print(f"Error generating with LLM tool: {e}")
return generated_texts
class MLXInterface(LLMInterface):
"""Interface for MLX-powered models on Mac."""
def __init__(
self, model_name="mlx-community/gemma-7b-it", max_length=150, temperature=0.9
):
"""Initialize the MLX interface."""
super().__init__(model_name, max_length, temperature)
# Check if MLX is installed
try:
import importlib.util
if importlib.util.find_spec("mlx") is not None:
print("MLX is available for optimized inference on Mac")
else:
print("Warning: MLX is not installed. Install with: pip install mlx")
except Exception as e:
print(f"Warning: Error checking for MLX: {e}")
def generate(self, prompt, num_responses=3):
"""Generate responses using MLX."""
try:
# Dynamically import MLX to avoid errors on non-Mac platforms
import mlx.core as mx
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
model = AutoModelForCausalLM.from_pretrained(
self.model_name, trust_remote_code=True, mx_dtype=mx.float16
)
generated_texts = []
for _ in range(num_responses):
# Tokenize the prompt
inputs = tokenizer(prompt, return_tensors="np")
# Generate
outputs = model.generate(
inputs["input_ids"],
max_length=len(inputs["input_ids"][0]) + self.max_length,
temperature=self.temperature,
do_sample=True,
top_p=0.92,
top_k=50,
)
# Decode the generated tokens
generated = tokenizer.decode(
outputs[0][len(inputs["input_ids"][0]) :], skip_special_tokens=True
)
# Clean up the response
generated = self.cleanup_response(generated)
# Add to our list if it's not empty
if generated:
generated_texts.append(generated)
return generated_texts
except Exception as e:
print(f"Error generating with MLX: {e}")
return []
def create_llm_interface(backend, model_name, max_length=150, temperature=0.9):
"""Create an appropriate LLM interface based on the backend.
Args:
backend: The backend to use ('hf', 'llm')
model_name: The name of the model to use
max_length: Maximum length of generated text
temperature: Controls randomness (higher = more random)
Returns:
An LLM interface instance
"""
if backend == "hf":
return HuggingFaceInterface(model_name, max_length, temperature)
elif backend == "llm":
return LLMToolInterface(model_name, max_length, temperature)
else:
raise ValueError(f"Unknown backend: {backend}")
def generate_response(
prompt,
model_name="distilgpt2",
max_length=150,
temperature=0.9,
num_responses=3,
backend="hf",
):
"""Generate multiple responses using the specified model and backend.
Args:
prompt: The prompt to generate responses for
model_name: The name of the model to use
max_length: Maximum number of new tokens to generate
temperature: Controls randomness (higher = more random)
num_responses: Number of different responses to generate
backend: The backend to use ('hf', 'ollama', 'llm', 'mlx')
Returns:
A list of generated responses
"""
# Create the appropriate interface
interface = create_llm_interface(backend, model_name, max_length, temperature)
# Generate responses
return interface.generate(prompt, num_responses)
def main():
# Set up argument parser
parser = argparse.ArgumentParser(
description="Generate AAC responses using social graph context"
)
parser.add_argument(
"--person", default="billy", help="Person ID from the social graph"
)
parser.add_argument("--topic", help="Topic of conversation")
parser.add_argument("--message", help="Message from the conversation partner")
parser.add_argument(
"--backend",
default="llm",
choices=["hf", "llm"],
help="Backend to use for generation (hf=HuggingFace, "
"llm=Simon Willison's LLM tool with support for Gemini/MLX/Ollama)",
)
parser.add_argument(
"--model",
default="gemini-1.5-pro-latest",
help="Model to use for generation. Recommended models by backend:\n"
"- hf: 'distilgpt2', 'gpt2-medium', 'google/gemma-2b-it'\n"
"- llm: 'gemini-1.5-pro-latest', 'gemma-3-27b-it' (requires llm-gemini plugin)\n"
" 'mlx-community/gemma-7b-it' (requires llm-mlx plugin)\n"
" 'Ollama: gemma3:4b-it-qat', 'Ollama: llama3:8b' (requires llm-ollama plugin)",
)
parser.add_argument(
"--num_responses", type=int, default=3, help="Number of responses to generate"
)
parser.add_argument(
"--max_length",
type=int,
default=150,
help="Maximum length of generated responses",
)
parser.add_argument(
"--temperature",
type=float,
default=0.9,
help="Temperature for generation (higher = more creative)",
)
args = parser.parse_args()
# Check for token if using HF backend with gated models
if args.backend == "hf" and any(
name in args.model for name in ["gemma", "llama", "mistral"]
):
if not check_hf_token():
print("\nSuggestion: Try using the LLM tool with Gemini API instead:")
print(
f"python demo.py --backend llm --model gemini-1.5-pro-latest --person {args.person}"
+ (f' --topic "{args.topic}"' if args.topic else "")
+ (f' --message "{args.message}"' if args.message else "")
)
print("\nOr use a non-gated model:")
print(
f"python demo.py --backend hf --model gpt2-medium --person {args.person}"
+ (f' --topic "{args.topic}"' if args.topic else "")
+ (f' --message "{args.message}"' if args.message else "")
)
print("\nContinuing anyway, but expect authentication errors...\n")
# Load the social graph
social_graph = load_social_graph()
# Build the prompt
prompt = build_enhanced_prompt(social_graph, args.person, args.topic, args.message)
print("\n=== PROMPT ===")
print(prompt)
print(
f"\n=== GENERATING RESPONSE USING {args.backend.upper()} BACKEND WITH MODEL {args.model} ==="
)
# Generate the responses
try:
responses = generate_response(
prompt,
args.model,
max_length=args.max_length,
num_responses=args.num_responses,
temperature=args.temperature,
backend=args.backend,
)
print("\n=== RESPONSES ===")
for i, response in enumerate(responses, 1):
print(f"{i}. {response}")
print()
except Exception as e:
print(f"\nError generating responses: {e}")
if args.backend == "hf" and any(
name in args.model for name in ["gemma", "llama", "mistral"]
):
print("\nThis appears to be an authentication issue with a gated model.")
print("Try using the LLM tool with Gemini API instead:")
print(
f"python demo.py --backend llm --model gemini-1.5-pro-latest --person {args.person}"
+ (f' --topic "{args.topic}"' if args.topic else "")
+ (f' --message "{args.message}"' if args.message else "")
)
# Ollama is now handled through the llm backend
elif args.backend == "llm":
if "gemini" in args.model.lower() or "gemma" in args.model.lower():
print(
"\nMake sure you have the GEMINI_API_KEY environment variable set:"
)
print("export GEMINI_API_KEY=your_api_key")
print("\nAnd make sure llm-gemini is installed:")
print("llm install llm-gemini")
elif "mlx" in args.model.lower():
print("\nMake sure llm-mlx is installed:")
print("llm install llm-mlx")
elif "ollama" in args.model.lower():
print("\nMake sure Ollama is installed and running:")
print("1. Install from https://ollama.ai/")
print("2. Start Ollama with: ollama serve")
print("3. Install the llm-ollama plugin: llm install llm-ollama")
model_name = args.model
if "ollama:" in model_name.lower():
model_name = model_name.replace("Ollama: ", "")
elif "/" in model_name:
model_name = model_name.split("/")[1]
print(f"4. Pull the model: ollama pull {model_name}")
else:
print("\nMake sure Simon Willison's LLM tool is installed:")
print("pip install llm")
# If running as a script
if __name__ == "__main__":
main()
|