File size: 39,314 Bytes
f0e6b7a bde23cb f0e6b7a d89243e f0e6b7a e4ea387 f0e6b7a e4ea387 f0e6b7a d89243e f0e6b7a d89243e f0e6b7a d89243e f0e6b7a d89243e f0e6b7a d89243e f0e6b7a d89243e f0e6b7a d89243e f0e6b7a d89243e f0e6b7a d89243e f0e6b7a d89243e f0e6b7a d89243e f0e6b7a d89243e f0e6b7a d89243e f0e6b7a d89243e f0e6b7a d89243e f0e6b7a d89243e f0e6b7a d89243e f0e6b7a e4ea387 f0e6b7a e4ea387 f0e6b7a f280910 f0e6b7a f280910 e4ea387 f280910 f0e6b7a f280910 f0e6b7a e4ea387 f0e6b7a f280910 f0e6b7a f280910 e4ea387 f280910 f0e6b7a e4ea387 f0e6b7a e4ea387 f0e6b7a e4ea387 f0e6b7a f280910 f0e6b7a f280910 f0e6b7a f280910 f0e6b7a f280910 e4ea387 f280910 e4ea387 f0e6b7a f280910 f0e6b7a e4ea387 f0e6b7a e4ea387 f0e6b7a e4ea387 f0e6b7a e4ea387 f0e6b7a f280910 f0e6b7a e4ea387 f0e6b7a d89243e e4ea387 d89243e f0e6b7a d89243e f0e6b7a d89243e f0e6b7a d89243e f0e6b7a d89243e f0e6b7a d89243e f0e6b7a d89243e f0e6b7a d89243e f0e6b7a d89243e f0e6b7a d89243e f0e6b7a d89243e f0e6b7a d89243e f0e6b7a d89243e f0e6b7a d89243e f0e6b7a d89243e f0e6b7a d89243e f0e6b7a d89243e e4ea387 f0e6b7a e4ea387 f0e6b7a e4ea387 d89243e e4ea387 f0e6b7a d89243e e4ea387 f0e6b7a d89243e f0e6b7a d89243e f0e6b7a d89243e f0e6b7a d89243e e4ea387 d89243e e4ea387 d89243e f0e6b7a d89243e f0e6b7a d89243e f0e6b7a d89243e f0e6b7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 |
import itertools
import os
import random
from typing import Any, Callable, Dict, List, Literal, Optional, Tuple, Union
import numpy as np
import safetensors.torch
import torch
import torch.nn.functional as F
import torchvision.transforms
import torchvision.transforms.functional as TF
from PIL import Image
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import default_collate
from transformers import (CLIPTextModel, CLIPTextModelWithProjection,
CLIPTokenizerFast)
from diffusion import (default_num_train_timesteps,
euler_ode_solver_diffusion_loop, make_sigmas)
from sdxl_models import (SDXLAdapter, SDXLControlNet, SDXLControlNetFull,
SDXLControlNetPreEncodedControlnetCond, SDXLUNet,
SDXLVae)
class SDXLTraining:
text_encoder_one: CLIPTextModel
text_encoder_two: CLIPTextModelWithProjection
vae: SDXLVae
sigmas: torch.Tensor
unet: SDXLUNet
adapter: Optional[SDXLAdapter]
controlnet: Optional[Union[SDXLControlNet, SDXLControlNetFull]]
train_unet: bool
train_unet_up_blocks: bool
mixed_precision: Optional[torch.dtype]
timestep_sampling: Literal["uniform", "cubic"]
validation_images_logged: bool
log_validation_input_images_every_time: bool
get_sdxl_conditioning_images: Callable[[Image.Image], Dict[str, Any]]
def __init__(
self,
device,
train_unet,
get_sdxl_conditioning_images,
train_unet_up_blocks=False,
unet_resume_from=None,
controlnet_cls=None,
controlnet_resume_from=None,
adapter_cls=None,
adapter_resume_from=None,
mixed_precision=None,
timestep_sampling="uniform",
log_validation_input_images_every_time=True,
):
self.text_encoder_one = CLIPTextModel.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="text_encoder", variant="fp16", torch_dtype=torch.float16)
self.text_encoder_one.to(device=device)
self.text_encoder_one.requires_grad_(False)
self.text_encoder_one.eval()
self.text_encoder_two = CLIPTextModelWithProjection.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="text_encoder_2", variant="fp16", torch_dtype=torch.float16)
self.text_encoder_two.to(device=device)
self.text_encoder_two.requires_grad_(False)
self.text_encoder_two.eval()
self.vae = SDXLVae.load_fp16_fix(device=device)
self.vae.requires_grad_(False)
self.vae.eval()
self.sigmas = make_sigmas(device=device)
if train_unet:
if unet_resume_from is None:
self.unet = SDXLUNet.load_fp32(device=device)
else:
self.unet = SDXLUNet.load(unet_resume_from, device=device)
self.unet.requires_grad_(True)
self.unet.train()
self.unet = DDP(self.unet, device_ids=[device])
elif train_unet_up_blocks:
if unet_resume_from is None:
self.unet = SDXLUNet.load_fp32(device=device)
else:
self.unet = SDXLUNet.load_fp32(device=device, overrides=[unet_resume_from])
self.unet.requires_grad_(False)
self.unet.eval()
self.unet.up_blocks.requires_grad_(True)
self.unet.up_blocks.train()
self.unet = DDP(self.unet, device_ids=[device], find_unused_parameters=True)
else:
self.unet = SDXLUNet.load_fp16(device=device)
self.unet.requires_grad_(False)
self.unet.eval()
if controlnet_cls is not None:
if controlnet_resume_from is None:
self.controlnet = controlnet_cls.from_unet(self.unet)
self.controlnet.to(device)
else:
self.controlnet = controlnet_cls.load(controlnet_resume_from, device=device)
self.controlnet.train()
self.controlnet.requires_grad_(True)
# TODO add back
# controlnet.enable_gradient_checkpointing()
# TODO - should be able to remove find_unused_parameters. Comes from pre encoded controlnet
self.controlnet = DDP(self.controlnet, device_ids=[device], find_unused_parameters=True)
else:
self.controlnet = None
if adapter_cls is not None:
if adapter_resume_from is None:
self.adapter = adapter_cls()
self.adapter.to(device=device)
else:
self.adapter = adapter_cls.load(adapter_resume_from, device=device)
self.adapter.train()
self.adapter.requires_grad_(True)
self.adapter = DDP(self.adapter, device_ids=[device])
else:
self.adapter = None
self.mixed_precision = mixed_precision
self.timestep_sampling = timestep_sampling
self.validation_images_logged = False
self.log_validation_input_images_every_time = log_validation_input_images_every_time
self.get_sdxl_conditioning_images = get_sdxl_conditioning_images
self.train_unet = train_unet
self.train_unet_up_blocks = train_unet_up_blocks
def train_step(self, batch):
with torch.no_grad():
if isinstance(self.unet, DDP):
unet_dtype = self.unet.module.dtype
unet_device = self.unet.module.device
else:
unet_dtype = self.unet.dtype
unet_device = self.unet.device
micro_conditioning = batch["micro_conditioning"].to(device=unet_device)
image = batch["image"].to(self.vae.device, dtype=self.vae.dtype)
latents = self.vae.encode(image).to(dtype=unet_dtype)
text_input_ids_one = batch["text_input_ids_one"].to(self.text_encoder_one.device)
text_input_ids_two = batch["text_input_ids_two"].to(self.text_encoder_two.device)
encoder_hidden_states, pooled_encoder_hidden_states = sdxl_text_conditioning(self.text_encoder_one, self.text_encoder_two, text_input_ids_one, text_input_ids_two)
encoder_hidden_states = encoder_hidden_states.to(dtype=unet_dtype)
pooled_encoder_hidden_states = pooled_encoder_hidden_states.to(dtype=unet_dtype)
bsz = latents.shape[0]
if self.timestep_sampling == "uniform":
timesteps = torch.randint(0, default_num_train_timesteps, (bsz,), device=unet_device)
elif self.timestep_sampling == "cubic":
# Cubic sampling to sample a random timestep for each image
timesteps = torch.rand((bsz,), device=unet_device)
timesteps = (1 - timesteps**3) * default_num_train_timesteps
timesteps = timesteps.long()
timesteps = timesteps.clamp(0, default_num_train_timesteps - 1)
else:
assert False
sigmas_ = self.sigmas[timesteps].to(dtype=latents.dtype)
noise = torch.randn_like(latents)
noisy_latents = latents + noise * sigmas_
scaled_noisy_latents = noisy_latents / ((sigmas_**2 + 1) ** 0.5)
if "conditioning_image" in batch:
conditioning_image = batch["conditioning_image"].to(unet_device)
if self.controlnet is not None and isinstance(self.controlnet, SDXLControlNetPreEncodedControlnetCond):
controlnet_device = self.controlnet.module.device
controlnet_dtype = self.controlnet.module.dtype
conditioning_image = self.vae.encode(conditioning_image.to(self.vae.dtype)).to(device=controlnet_device, dtype=controlnet_dtype)
conditioning_image_mask = TF.resize(batch["conditioning_image_mask"], conditioning_image.shape[2:]).to(device=controlnet_device, dtype=controlnet_dtype)
conditioning_image = torch.concat((conditioning_image, conditioning_image_mask), dim=1)
with torch.autocast(
"cuda",
self.mixed_precision,
enabled=self.mixed_precision is not None,
):
down_block_additional_residuals = None
mid_block_additional_residual = None
add_to_down_block_inputs = None
add_to_output = None
if self.adapter is not None:
down_block_additional_residuals = self.adapter(conditioning_image)
if self.controlnet is not None:
controlnet_out = self.controlnet(
x_t=scaled_noisy_latents,
t=timesteps,
encoder_hidden_states=encoder_hidden_states,
micro_conditioning=micro_conditioning,
pooled_encoder_hidden_states=pooled_encoder_hidden_states,
controlnet_cond=conditioning_image,
)
down_block_additional_residuals = controlnet_out["down_block_res_samples"]
mid_block_additional_residual = controlnet_out["mid_block_res_sample"]
add_to_down_block_inputs = controlnet_out.get("add_to_down_block_inputs", None)
add_to_output = controlnet_out.get("add_to_output", None)
model_pred = self.unet(
x_t=scaled_noisy_latents,
t=timesteps,
encoder_hidden_states=encoder_hidden_states,
micro_conditioning=micro_conditioning,
pooled_encoder_hidden_states=pooled_encoder_hidden_states,
down_block_additional_residuals=down_block_additional_residuals,
mid_block_additional_residual=mid_block_additional_residual,
add_to_down_block_inputs=add_to_down_block_inputs,
add_to_output=add_to_output,
).sample
loss = F.mse_loss(model_pred.float(), noise.float(), reduction="mean")
return loss
@torch.no_grad()
def log_validation(self, step, num_validation_images: int, validation_prompts: Optional[List[str]] = None, validation_images: Optional[List[str]] = None):
import wandb
if isinstance(self.unet, DDP):
unet = self.unet.module
unet.eval()
unet_set_to_eval = True
else:
unet = self.unet
unet_set_to_eval = False
if self.adapter is not None:
adapter = self.adapter.module
adapter.eval()
else:
adapter = None
if self.controlnet is not None:
controlnet = self.controlnet.module
controlnet.eval()
else:
controlnet = None
formatted_validation_images = None
if validation_images is not None:
formatted_validation_images = []
wandb_validation_images = []
for validation_image_path in validation_images:
validation_image = Image.open(validation_image_path)
validation_image = validation_image.convert("RGB")
validation_image = validation_image.resize((1024, 1024))
conditioning_images = self.get_sdxl_conditioning_images(validation_image)
conditioning_image = conditioning_images["conditioning_image"]
if self.controlnet is not None and isinstance(self.controlnet, SDXLControlNetPreEncodedControlnetCond):
conditioning_image = self.vae.encode(conditioning_image[None, :, :, :].to(self.vae.device, dtype=self.vae.dtype))
conditionin_mask_image = TF.resize(conditioning_images["conditioning_mask_image"], conditioning_image.shape[2:]).to(conditioning_image.dtype, conditioning_image.device)
conditioning_image = torch.concat(conditioning_image, conditionin_mask_image, dim=1)
formatted_validation_images.append(conditioning_image)
wandb_validation_images.append(wandb.Image(conditioning_images["conditioning_image_as_pil"]))
if self.log_validation_input_images_every_time or not self.validation_images_logged:
wandb.log({"validation_conditioning": wandb_validation_images}, step=step)
self.validation_images_logged = True
generator = torch.Generator().manual_seed(0)
output_validation_images = []
for formatted_validation_image, validation_prompt in zip(formatted_validation_images, validation_prompts):
for _ in range(num_validation_images):
with torch.autocast("cuda"):
x_0 = sdxl_diffusion_loop(
prompts=validation_prompt,
images=formatted_validation_image,
unet=unet,
text_encoder_one=self.text_encoder_one,
text_encoder_two=self.text_encoder_two,
controlnet=controlnet,
adapter=adapter,
sigmas=self.sigmas,
generator=generator,
)
x_0 = self.vae.decode(x_0)
x_0 = self.vae.output_tensor_to_pil(x_0)[0]
output_validation_images.append(wandb.Image(x_0, caption=validation_prompt))
wandb.log({"validation": output_validation_images}, step=step)
if unet_set_to_eval:
unet.train()
if adapter is not None:
adapter.train()
if controlnet is not None:
controlnet.train()
def parameters(self):
if self.train_unet:
return self.unet.parameters()
if self.controlnet is not None and self.train_unet_up_blocks:
return itertools.chain(self.controlnet.parameters(), self.unet.up_blocks.parameters())
if self.controlnet is not None:
return self.controlnet.parameters()
if self.adapter is not None:
return self.adapter.parameters()
assert False
def save(self, save_to):
if self.train_unet:
safetensors.torch.save_file(self.unet.module.state_dict(), os.path.join(save_to, "unet.safetensors"))
if self.controlnet is not None and self.train_unet_up_blocks:
safetensors.torch.save_file(self.controlnet.module.state_dict(), os.path.join(save_to, "controlnet.safetensors"))
safetensors.torch.save_file(self.unet.module.up_blocks.state_dict(), os.path.join(save_to, "unet.safetensors"))
if self.controlnet is not None:
safetensors.torch.save_file(self.controlnet.module.state_dict(), os.path.join(save_to, "controlnet.safetensors"))
if self.adapter is not None:
safetensors.torch.save_file(self.adapter.module.state_dict(), os.path.join(save_to, "adapter.safetensors"))
def get_sdxl_dataset(train_shards: str, shuffle_buffer_size: int, batch_size: int, proportion_empty_prompts: float, get_sdxl_conditioning_images=None):
import webdataset as wds
dataset = (
wds.WebDataset(
train_shards,
resampled=True,
handler=wds.ignore_and_continue,
)
.shuffle(shuffle_buffer_size)
.decode("pil", handler=wds.ignore_and_continue)
.rename(
image="jpg;png;jpeg;webp",
text="text;txt;caption",
metadata="json",
handler=wds.warn_and_continue,
)
.map(lambda d: make_sample(d, proportion_empty_prompts=proportion_empty_prompts, get_sdxl_conditioning_images=get_sdxl_conditioning_images))
.select(lambda sample: "conditioning_image" not in sample or sample["conditioning_image"] is not None)
)
dataset = dataset.batched(batch_size, partial=False, collation_fn=default_collate)
return dataset
@torch.no_grad()
def make_sample(d, proportion_empty_prompts, get_sdxl_conditioning_images=None):
image = d["image"]
metadata = d["metadata"]
if random.random() < proportion_empty_prompts:
text = ""
else:
text = d["text"]
c_top, c_left, _, _ = get_random_crop_params([image.height, image.width], [1024, 1024])
original_width = int(metadata.get("original_width", 0.0))
original_height = int(metadata.get("original_height", 0.0))
micro_conditioning = torch.tensor([original_width, original_height, c_top, c_left, 1024, 1024])
text_input_ids_one = sdxl_tokenize_one(text)[0]
text_input_ids_two = sdxl_tokenize_two(text)[0]
image = image.convert("RGB")
image = TF.resize(
image,
1024,
interpolation=torchvision.transforms.InterpolationMode.BILINEAR,
)
image = TF.crop(
image,
c_top,
c_left,
1024,
1024,
)
sample = {
"micro_conditioning": micro_conditioning,
"text_input_ids_one": text_input_ids_one,
"text_input_ids_two": text_input_ids_two,
"image": SDXLVae.input_pil_to_tensor(image),
}
if get_sdxl_conditioning_images is not None:
conditioning_images = get_sdxl_conditioning_images(image)
sample["conditioning_image"] = conditioning_images["conditioning_image"]
if conditioning_images["conditioning_image_mask"] is not None:
sample["conditioning_image_mask"] = conditioning_images["conditioning_image_mask"]
return sample
def get_random_crop_params(input_size: Tuple[int, int], output_size: Tuple[int, int]) -> Tuple[int, int, int, int]:
h, w = input_size
th, tw = output_size
if h < th or w < tw:
raise ValueError(f"Required crop size {(th, tw)} is larger than input image size {(h, w)}")
if w == tw and h == th:
return 0, 0, h, w
i = torch.randint(0, h - th + 1, size=(1,)).item()
j = torch.randint(0, w - tw + 1, size=(1,)).item()
return i, j, th, tw
def get_adapter_openpose_conditioning_image(image, open_pose):
resolution = image.width
conditioning_image = open_pose(image, detect_resolution=resolution, image_resolution=resolution, return_pil=False)
if (conditioning_image == 0).all():
return None, None
conditioning_image_as_pil = Image.fromarray(conditioning_image)
conditioning_image = TF.to_tensor(conditioning_image)
return dict(conditioning_image=conditioning_image, conditioning_image_as_pil=conditioning_image_as_pil)
def get_controlnet_canny_conditioning_image(image):
import cv2
conditioning_image = np.array(image)
conditioning_image = cv2.Canny(conditioning_image, 100, 200)
conditioning_image = conditioning_image[:, :, None]
conditioning_image = np.concatenate([conditioning_image, conditioning_image, conditioning_image], axis=2)
conditioning_image_as_pil = Image.fromarray(conditioning_image)
conditioning_image = TF.to_tensor(conditioning_image)
return dict(conditioning_image=conditioning_image, conditioning_image_as_pil=conditioning_image_as_pil)
def get_controlnet_pre_encoded_controlnet_inpainting_conditioning_image(image, conditioning_image_mask):
resolution = image.width
if conditioning_image_mask is None:
if random.random() <= 0.25:
conditioning_image_mask = np.ones((resolution, resolution), np.float32)
else:
conditioning_image_mask = random.choice([make_random_rectangle_mask, make_random_irregular_mask, make_outpainting_mask])(resolution, resolution)
conditioning_image_mask = torch.from_numpy(conditioning_image_mask)
conditioning_image_mask = conditioning_image_mask[None, :, :]
conditioning_image = TF.to_tensor(image)
# where mask is 1, zero out the pixels. Note that this requires mask to be concattenated
# with the mask so that the network knows the zeroed out pixels are from the mask and
# are not just zero in the original image
conditioning_image = conditioning_image * (conditioning_image_mask < 0.5)
conditioning_image_as_pil = TF.to_pil_image(conditioning_image)
conditioning_image = TF.normalize(conditioning_image, [0.5], [0.5])
return dict(conditioning_image=conditioning_image, conditioning_image_mask=conditioning_image_mask, conditioning_image_as_pil=conditioning_image_as_pil)
def get_controlnet_inpainting_conditioning_image(image, conditioning_image_mask):
resolution = image.width
if conditioning_image_mask is None:
if random.random() <= 0.25:
conditioning_image_mask = np.ones((resolution, resolution), np.float32)
else:
conditioning_image_mask = random.choice([make_random_rectangle_mask, make_random_irregular_mask, make_outpainting_mask])(resolution, resolution)
conditioning_image_mask = torch.from_numpy(conditioning_image_mask)
conditioning_image_mask = conditioning_image_mask[None, :, :]
conditioning_image = TF.to_tensor(image)
# Just zero out the pixels which will be masked
conditioning_image_as_pil = TF.to_pil_image(conditioning_image * (conditioning_image_mask < 0.5))
# where mask is set to 1, set to -1 "special" masked image pixel.
# -1 is outside of the 0-1 range that the controlnet normalized
# input is in.
conditioning_image = conditioning_image * (conditioning_image_mask < 0.5) + -1.0 * (conditioning_image_mask >= 0.5)
return dict(conditioning_image=conditioning_image, conditioning_image_mask=conditioning_image_mask, conditioning_image_as_pil=conditioning_image_as_pil)
# TODO: would be nice to just call a function from a tokenizers https://github.com/huggingface/tokenizers
# i.e. afaik tokenizing shouldn't require holding any state
tokenizer_one = CLIPTokenizerFast.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="tokenizer")
tokenizer_two = CLIPTokenizerFast.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="tokenizer_2")
def sdxl_tokenize_one(prompts):
return tokenizer_one(
prompts,
padding="max_length",
max_length=tokenizer_one.model_max_length,
truncation=True,
return_tensors="pt",
).input_ids
def sdxl_tokenize_two(prompts):
return tokenizer_two(
prompts,
padding="max_length",
max_length=tokenizer_one.model_max_length,
truncation=True,
return_tensors="pt",
).input_ids
def sdxl_text_conditioning(text_encoder_one, text_encoder_two, text_input_ids_one, text_input_ids_two):
prompt_embeds_1 = text_encoder_one(
text_input_ids_one,
output_hidden_states=True,
).hidden_states[-2]
prompt_embeds_1 = prompt_embeds_1.view(prompt_embeds_1.shape[0], prompt_embeds_1.shape[1], -1)
prompt_embeds_2 = text_encoder_two(
text_input_ids_two,
output_hidden_states=True,
)
pooled_encoder_hidden_states = prompt_embeds_2[0]
prompt_embeds_2 = prompt_embeds_2.hidden_states[-2]
prompt_embeds_2 = prompt_embeds_2.view(prompt_embeds_2.shape[0], prompt_embeds_2.shape[1], -1)
encoder_hidden_states = torch.cat((prompt_embeds_1, prompt_embeds_2), dim=-1)
return encoder_hidden_states, pooled_encoder_hidden_states
def make_random_rectangle_mask(
height,
width,
margin=10,
bbox_min_size=100,
bbox_max_size=512,
min_times=1,
max_times=2,
):
mask = np.zeros((height, width), np.float32)
bbox_max_size = min(bbox_max_size, height - margin * 2, width - margin * 2)
times = np.random.randint(min_times, max_times + 1)
for i in range(times):
box_width = np.random.randint(bbox_min_size, bbox_max_size)
box_height = np.random.randint(bbox_min_size, bbox_max_size)
start_x = np.random.randint(margin, width - margin - box_width + 1)
start_y = np.random.randint(margin, height - margin - box_height + 1)
mask[start_y : start_y + box_height, start_x : start_x + box_width] = 1
return mask
def make_random_irregular_mask(height, width, max_angle=4, max_len=60, max_width=256, min_times=1, max_times=2):
import cv2
mask = np.zeros((height, width), np.float32)
times = np.random.randint(min_times, max_times + 1)
for i in range(times):
start_x = np.random.randint(width)
start_y = np.random.randint(height)
for j in range(1 + np.random.randint(5)):
angle = 0.01 + np.random.randint(max_angle)
if i % 2 == 0:
angle = 2 * 3.1415926 - angle
length = 10 + np.random.randint(max_len)
brush_w = 5 + np.random.randint(max_width)
end_x = np.clip((start_x + length * np.sin(angle)).astype(np.int32), 0, width)
end_y = np.clip((start_y + length * np.cos(angle)).astype(np.int32), 0, height)
choice = random.randint(0, 2)
if choice == 0:
cv2.line(mask, (start_x, start_y), (end_x, end_y), 1.0, brush_w)
elif choice == 1:
cv2.circle(mask, (start_x, start_y), radius=brush_w, color=1.0, thickness=-1)
elif choice == 2:
radius = brush_w // 2
mask[
start_y - radius : start_y + radius,
start_x - radius : start_x + radius,
] = 1
else:
assert False
start_x, start_y = end_x, end_y
return mask
def make_outpainting_mask(height, width, probs=[0.5, 0.5, 0.5, 0.5]):
mask = np.zeros((height, width), np.float32)
at_least_one_mask_applied = False
coords = [
[(0, 0), (1, get_padding(height))],
[(0, 0), (get_padding(width), 1)],
[(0, 1 - get_padding(height)), (1, 1)],
[(1 - get_padding(width), 0), (1, 1)],
]
for pp, coord in zip(probs, coords):
if np.random.random() < pp:
at_least_one_mask_applied = True
mask = apply_padding(mask=mask, coord=coord)
if not at_least_one_mask_applied:
idx = np.random.choice(range(len(coords)), p=np.array(probs) / sum(probs))
mask = apply_padding(mask=mask, coord=coords[idx])
return mask
def get_padding(size, min_padding_percent=0.04, max_padding_percent=0.5):
n1 = int(min_padding_percent * size)
n2 = int(max_padding_percent * size)
return np.random.randint(n1, n2) / size
def apply_padding(mask, coord):
height, width = mask.shape
mask[
int(coord[0][0] * height) : int(coord[1][0] * height),
int(coord[0][1] * width) : int(coord[1][1] * width),
] = 1
return mask
@torch.no_grad()
def sdxl_diffusion_loop(
prompts: Union[str, List[str]],
unet,
text_encoder_one,
text_encoder_two,
images=None,
controlnet=None,
adapter=None,
sigmas=None,
timesteps=None,
x_T=None,
micro_conditioning=None,
guidance_scale=5.0,
generator=None,
negative_prompts=None,
diffusion_loop=euler_ode_solver_diffusion_loop,
):
if isinstance(prompts, str):
prompts = [prompts]
batch_size = len(prompts)
if negative_prompts is not None and guidance_scale > 1.0:
prompts += negative_prompts
encoder_hidden_states, pooled_encoder_hidden_states = sdxl_text_conditioning(
text_encoder_one,
text_encoder_two,
sdxl_tokenize_one(prompts).to(text_encoder_one.device),
sdxl_tokenize_two(prompts).to(text_encoder_two.device),
)
encoder_hidden_states = encoder_hidden_states.to(unet.dtype)
pooled_encoder_hidden_states = pooled_encoder_hidden_states.to(unet.dtype)
if guidance_scale > 1.0:
if negative_prompts is None:
negative_encoder_hidden_states = torch.zeros_like(encoder_hidden_states)
negative_pooled_encoder_hidden_states = torch.zeros_like(pooled_encoder_hidden_states)
else:
encoder_hidden_states, negative_encoder_hidden_states = torch.chunk(encoder_hidden_states, 2)
pooled_encoder_hidden_states, negative_pooled_encoder_hidden_states = torch.chunk(pooled_encoder_hidden_states, 2)
else:
negative_encoder_hidden_states = None
negative_pooled_encoder_hidden_states = None
if sigmas is None:
sigmas = make_sigmas(device=unet.device)
if timesteps is None:
timesteps = torch.linspace(0, sigmas.numel() - 1, 50, dtype=torch.long, device=unet.device)
if x_T is None:
x_T = torch.randn((batch_size, 4, 1024 // 8, 1024 // 8), dtype=unet.dtype, device=unet.device, generator=generator)
x_T = x_T * ((sigmas[timesteps[-1]] ** 2 + 1) ** 0.5)
if micro_conditioning is None:
micro_conditioning = torch.tensor([[1024, 1024, 0, 0, 1024, 1024]], dtype=torch.long, device=unet.device)
micro_conditioning = micro_conditioning.expand(batch_size, -1)
if adapter is not None:
down_block_additional_residuals = adapter(images.to(dtype=adapter.dtype, device=adapter.device))
else:
down_block_additional_residuals = None
if controlnet is not None:
controlnet_cond = images.to(dtype=controlnet.dtype, device=controlnet.device)
else:
controlnet_cond = None
eps_theta = lambda *args, **kwargs: sdxl_eps_theta(
*args,
**kwargs,
unet=unet,
encoder_hidden_states=encoder_hidden_states,
pooled_encoder_hidden_states=pooled_encoder_hidden_states,
negative_encoder_hidden_states=negative_encoder_hidden_states,
negative_pooled_encoder_hidden_states=negative_pooled_encoder_hidden_states,
micro_conditioning=micro_conditioning,
guidance_scale=guidance_scale,
controlnet=controlnet,
controlnet_cond=controlnet_cond,
down_block_additional_residuals=down_block_additional_residuals,
)
x_0 = diffusion_loop(eps_theta=eps_theta, timesteps=timesteps, sigmas=sigmas, x_T=x_T)
return x_0
@torch.no_grad()
def sdxl_eps_theta(
x_t,
t,
sigma,
unet,
encoder_hidden_states,
pooled_encoder_hidden_states,
negative_encoder_hidden_states,
negative_pooled_encoder_hidden_states,
micro_conditioning,
guidance_scale,
controlnet=None,
controlnet_cond=None,
down_block_additional_residuals=None,
):
# TODO - how does this not effect the ode we are solving
scaled_x_t = x_t / ((sigma**2 + 1) ** 0.5)
if guidance_scale > 1.0:
scaled_x_t = torch.concat([scaled_x_t, scaled_x_t])
encoder_hidden_states = torch.concat((encoder_hidden_states, negative_encoder_hidden_states))
pooled_encoder_hidden_states = torch.concat((pooled_encoder_hidden_states, negative_pooled_encoder_hidden_states))
micro_conditioning = torch.concat([micro_conditioning, micro_conditioning])
if controlnet_cond is not None:
controlnet_cond = torch.concat([controlnet_cond, controlnet_cond])
if controlnet is not None:
controlnet_out = controlnet(
x_t=scaled_x_t.to(controlnet.dtype),
t=t,
encoder_hidden_states=encoder_hidden_states.to(controlnet.dtype),
micro_conditioning=micro_conditioning.to(controlnet.dtype),
pooled_encoder_hidden_states=pooled_encoder_hidden_states.to(controlnet.dtype),
controlnet_cond=controlnet_cond,
)
down_block_additional_residuals = [x.to(unet.dtype) for x in controlnet_out["down_block_res_samples"]]
mid_block_additional_residual = controlnet_out["mid_block_res_sample"].to(unet.dtype)
add_to_down_block_inputs = controlnet_out.get("add_to_down_block_inputs", None)
if add_to_down_block_inputs is not None:
add_to_down_block_inputs = [x.to(unet.dtype) for x in add_to_down_block_inputs]
add_to_output = controlnet_out.get("add_to_output", None)
if add_to_output is not None:
add_to_output = add_to_output.to(unet.dtype)
else:
mid_block_additional_residual = None
add_to_down_block_inputs = None
add_to_output = None
eps_hat = unet(
x_t=scaled_x_t,
t=t,
encoder_hidden_states=encoder_hidden_states,
micro_conditioning=micro_conditioning,
pooled_encoder_hidden_states=pooled_encoder_hidden_states,
down_block_additional_residuals=down_block_additional_residuals,
mid_block_additional_residual=mid_block_additional_residual,
add_to_down_block_inputs=add_to_down_block_inputs,
add_to_output=add_to_output,
)
if guidance_scale > 1.0:
eps_hat, eps_hat_uncond = eps_hat.chunk(2)
eps_hat = eps_hat_uncond + guidance_scale * (eps_hat - eps_hat_uncond)
return eps_hat
known_negative_prompt = "text, watermark, low-quality, signature, moiré pattern, downsampling, aliasing, distorted, blurry, glossy, blur, jpeg artifacts, compression artifacts, poorly drawn, low-resolution, bad, distortion, twisted, excessive, exaggerated pose, exaggerated limbs, grainy, symmetrical, duplicate, error, pattern, beginner, pixelated, fake, hyper, glitch, overexposed, high-contrast, bad-contrast"
if __name__ == "__main__":
from argparse import ArgumentParser
args = ArgumentParser()
args.add_argument("--prompts", required=True, type=str, nargs="+")
args.add_argument("--negative_prompts", required=False, type=str, nargs="+")
args.add_argument("--use_known_negative_prompt", action="store_true")
args.add_argument("--num_images_per_prompt", required=True, type=int, default=1)
args.add_argument("--num_inference_steps", required=False, type=int, default=50)
args.add_argument("--images", required=False, type=str, default=None, nargs="+")
args.add_argument("--masks", required=False, type=str, default=None, nargs="+")
args.add_argument("--controlnet_checkpoint", required=False, type=str, default=None)
args.add_argument("--controlnet", required=False, choices=["SDXLControlNet", "SDXLControlNetFull", "SDXLControNetPreEncodedControlnetCond"], default=None)
args.add_argument("--adapter_checkpoint", required=False, type=str, default=None)
args.add_argument("--device", required=False, default=None)
args.add_argument("--dtype", required=False, default="fp16", choices=["fp16", "fp32"])
args.add_argument("--guidance_scale", required=False, default=5.0, type=float)
args.add_argument("--seed", required=False, type=int)
args = args.parse_args()
if args.device is None:
if torch.cuda.is_available():
device = "cuda"
elif torch.backends.mps.is_available():
device = "mps"
if args.dtype == "fp16":
dtype = torch.float16
text_encoder_one = CLIPTextModel.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="text_encoder", variant="fp16", torch_dtype=torch.float16)
text_encoder_one.to(device=device)
text_encoder_two = CLIPTextModelWithProjection.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="text_encoder_2", variant="fp16", torch_dtype=torch.float16)
text_encoder_two.to(device=device)
vae = SDXLVae.load_fp16_fix(device=device)
vae.to(torch.float16)
unet = SDXLUNet.load_fp16(device=device)
elif args.dtype == "fp32":
dtype = torch.float32
text_encoder_one = CLIPTextModel.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="text_encoder")
text_encoder_one.to(device=device)
text_encoder_two = CLIPTextModelWithProjection.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="text_encoder_2")
text_encoder_two.to(device=device)
vae = SDXLVae.load_fp16_fix(device=device)
unet = SDXLUNet.load_fp32(device=device)
else:
assert False
if args.controlnet == "SDXLControlNet":
controlnet = SDXLControlNet.load(args.controlnet_checkpoint, device=device)
controlnet.to(dtype)
elif args.controlnet == "SDXLControlNetFull":
controlnet = SDXLControlNetFull.load(args.controlnet_checkpoint, device=device)
controlnet.to(dtype)
elif args.controlnet == "SDXLControlNetPreEncodedControlnetCond":
controlnet = SDXLControlNetPreEncodedControlnetCond.load(args.controlnet_checkpoint, device=device)
controlnet.to(dtype)
else:
controlnet = None
if args.adapter_checkpoint is not None:
adapter = SDXLAdapter.load(args.adapter_checkpoint, device=device)
adapter.to(dtype)
else:
adapter = None
sigmas = make_sigmas(device=device).to(unet.dtype)
timesteps = torch.linspace(0, sigmas.numel() - 1, args.num_inference_steps, dtype=torch.long, device=unet.device)
prompts = []
for prompt in args.prompts:
prompts += [prompt] * args.num_images_per_prompt
if args.use_known_negative_prompt:
args.negative_prompts = [known_negative_prompt]
if args.negative_prompts is None:
negative_prompts = None
elif len(args.negative_prompts) == 1:
negative_prompts = args.negative_prompts * len(prompts)
elif len(args.negative_prompts) == len(args.prompts):
negative_prompts = []
for negative_prompt in args.negative_prompts:
negative_prompts += [negative_prompt] * args.num_images_per_prompt
else:
assert False
if args.images is not None:
images = []
for image_idx, image in enumerate(args.images):
image = Image.open(image)
image = image.convert("RGB")
image = image.resize((1024, 1024))
image = TF.to_tensor(image)
if args.masks is not None:
mask = args.masks[image_idx]
mask = Image.open(mask)
mask = mask.convert("L")
mask = mask.resize((1024, 1024))
mask = TF.to_tensor(mask)
if isinstance(controlnet, SDXLControlNetPreEncodedControlnetCond):
image = image * (mask < 0.5)
image = TF.normalize(image, [0.5], [0.5])
image = vae.encode(image[None, :, :, :].to(dtype=vae.dtype, device=vae.device)).to(dtype=controlnet.dtype, device=controlnet.device)
mask = TF.resize(mask, (1024 // 8, 1024 // 8))[None, :, :, :].to(dtype=image.dtype, device=image.device)
image = torch.concat((image, mask), dim=1)
else:
image = (image * (mask < 0.5) + -1.0 * (mask >= 0.5)).to(dtype=dtype, device=device)
image = image[None, :, :, :]
images += [image] * args.num_images_per_prompt
images = torch.concat(images)
else:
images = None
if args.seed is None:
generator = None
else:
generator = torch.Generator(device).manual_seed(args.seed)
images = sdxl_diffusion_loop(
prompts=prompts,
unet=unet,
text_encoder_one=text_encoder_one,
text_encoder_two=text_encoder_two,
images=images,
controlnet=controlnet,
adapter=adapter,
sigmas=sigmas,
timesteps=timesteps,
guidance_scale=args.guidance_scale,
negative_prompts=negative_prompts,
generator=generator,
)
images = vae.output_tensor_to_pil(vae.decode(images))
for i, image in enumerate(images):
image.save(f"out_{i}.png")
|