Spaces:
Sleeping
Sleeping
File size: 1,841 Bytes
743067f 46bcc72 e6d1128 bf950aa e6d1128 bf950aa d29ff44 cc37a15 46bcc72 e6d1128 54a06b3 46bcc72 e6d1128 46bcc72 e6d1128 46bcc72 e6d1128 bf950aa 07afb57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import json
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
# Load the JSON data from the file
with open('uts_courses.json') as f:
data = json.load(f)
# Load the question-answering pipeline
qa_pipeline = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
# Load tokenizer and model for dialog generation
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large")
# Main function to interact with the user
def main():
print("Welcome! I'm the UTS Course Chatbot. How can I assist you today?")
print("You can ask questions about UTS courses or type 'exit' to end the conversation.")
while True:
user_input = input("You: ")
if user_input.lower() == 'exit':
print("Bot: Exiting the program.")
break
if "courses" in user_input.lower() and "available" in user_input.lower():
field = user_input.split("in ")[-1]
courses = data['courses'].get(field, [])
if courses:
response = f"Courses in {field}: {', '.join(courses)}"
else:
response = f"No courses found in {field}."
else:
response = generate_dialog_response(user_input)
print("Bot:", response)
# Function to generate response using dialog generation model
def generate_dialog_response(user_input):
input_text = user_input + tokenizer.eos_token
input_ids = tokenizer.encode(input_text, return_tensors="pt")
# Generate response
response_ids = model.generate(input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
response_text = tokenizer.decode(response_ids[0], skip_special_tokens=True)
return response_text
if __name__ == "__main__":
main()
|