Spaces:
Sleeping
Sleeping
File size: 1,466 Bytes
af8384f 743067f e6d1128 af8384f e6d1128 46bcc72 e6d1128 af8384f 54a06b3 af8384f e6d1128 bf950aa 3fd0f5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import json
title = "AI ChatBot"
description = "A State-of-the-Art Large-scale Pretrained Response generation model (DialoGPT)"
examples = [["How are you?"]]
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large")
def predict(input, history=[], file_path=None):
if file_path:
json_data = read_json_file(file_path)
print(f"Contents of {file_path}:")
print(json_data)
print()
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors="pt")
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
history = model.generate(bot_input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id).tolist()
response = tokenizer.decode(history[0]).split("\n") # Splitting on new lines
return response[0], history
def read_json_file(file_path):
with open(file_path, 'r') as file:
data = json.load(file)
return data
def main():
gr.Interface(
fn=predict,
title=title,
description=description,
examples=examples,
inputs=[gr.inputs.Textbox(label="User Input"), gr.inputs.File(label="JSON File")],
outputs=["text", "text"],
theme="finlaymacklon/boxy_violet",
).launch()
if __name__ == "__main__":
main() |