File size: 1,318 Bytes
358ca2c 593fc20 358ca2c 593fc20 358ca2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import pandas as pd
import numpy as np
import streamlit as st
from tensorflow.keras.preprocessing.image import load_img, img_to_array
from tensorflow_hub.keras_layer import KerasLayer
import tensorflow as tf
from tensorflow.keras.models import load_model
#load model
def run():
file = st.file_uploader("Upload an image", type=["jpg", "png"])
model = load_model('ANNmodel.keras', custom_objects={'KerasLayer': KerasLayer})
target_size=(360, 360)
def import_and_predict(image_data, model):
image = load_img(image_data, target_size=(360, 360))
img_array = img_to_array(image)
img_array = tf.expand_dims(img_array, 0) # Create a batch
# Normalize the image
img_array = img_array / 255.0
# Make prediction
predictions = model.predict(img_array)
# Get the class with the highest probability
idx = np.where(predictions >= 0.5, 1, 0).item()
# predicted_class = np.argmax(predictions)
jenis = ['Cataract', 'Normal']
result = f"Prediction: {jenis[idx]}"
return result
if file is None:
st.text("Please upload an image file")
else:
result = import_and_predict(file, model)
st.image(file)
st.write(result)
if __name__ == '__main__':
run() |