File size: 6,586 Bytes
bad52c6 6ed06d5 bad52c6 6ed06d5 bad52c6 6ed06d5 bad52c6 6ed06d5 bad52c6 6ed06d5 bad52c6 6ed06d5 bad52c6 6ed06d5 bad52c6 6ed06d5 bad52c6 6ed06d5 bad52c6 6ed06d5 bad52c6 6ed06d5 bad52c6 6ed06d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
#!/usr/bin/env python3
"""
ai_csv_editor_hf.py ββ AI-powered CSV editor using a Hugging Face model on CPU.
Features:
- Upload one or more CSV files (main + optional lookup tables)
- Type spreadsheet-style commands: CONCAT, VLOOKUP, XLOOKUP, SUMIF
- LLM (google/flan-t5-base) converts commands β JSON βedit planβ
- pandas applies each action in sequence
- Preview first 20 rows & download modified CSV
"""
import json
import io
import tempfile
import textwrap
import pathlib
from typing import List, Dict, Any
import pandas as pd
import gradio as gr
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 1. LOAD A SMALL INSTRUCTION-FOLLOWING MODEL (CPU only)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
MODEL_NAME = "google/flan-t5-base"
MAX_NEW_TOK = 256
TEMPERATURE = 0.0
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSeq2SeqLM.from_pretrained(
MODEL_NAME,
device_map="cpu", # force CPU
torch_dtype="auto"
)
generator = pipeline(
"text2text-generation",
model=model,
tokenizer=tokenizer,
device=-1, # -1 = CPU
)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 2. PROMPT β JSON βEDIT PLANβ
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
SYSTEM_PROMPT = textwrap.dedent("""\
You are an assistant that converts natural-language spreadsheet commands
into JSON edit plans. Respond with ONLY valid JSON matching this schema:
{
"actions": [
{
"operation": "concat | vlookup | xlookup | sumif",
"target": "string",
# For CONCAT:
"columns": ["colA","colB"],
"separator": " ",
# For VLOOKUP / XLOOKUP:
"lookup_value": "KeyInMain",
"lookup_file": "other.csv",
"lookup_column": "KeyInOther",
"return_column": "Value",
"exact": true,
# For SUMIF:
"criteria_column": "Category",
"criteria": "Foo",
"sum_column": "Amount"
}
]
}
""")
def plan_from_command(cmd: str) -> Dict[str, Any]:
prompt = f"{SYSTEM_PROMPT}\n\nUser: {cmd}\nJSON:"
output = generator(
prompt,
max_new_tokens=MAX_NEW_TOK,
temperature=TEMPERATURE,
do_sample=False,
)[0]["generated_text"]
try:
return json.loads(output)
except json.JSONDecodeError as e:
raise ValueError(f"Model returned invalid JSON:\n{output}") from e
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 3. DATA OPERATIONS
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def apply_action(df: pd.DataFrame,
uploads: Dict[str, pd.DataFrame],
act: Dict[str, Any]) -> pd.DataFrame:
op = act["operation"]
if op == "concat":
sep = act.get("separator", "")
df[act["target"]] = (
df[act["columns"]]
.astype(str)
.agg(sep.join, axis=1)
)
elif op in {"vlookup", "xlookup"}:
lookup_df = uploads[act["lookup_file"]]
# select only the two relevant columns and rename for merging
right = lookup_df[[act["lookup_column"], act["return_column"]]] \
.rename(columns={
act["lookup_column"]: act["lookup_value"],
act["return_column"]: act["target"]
})
df = df.merge(right, on=act["lookup_value"], how="left")
elif op == "sumif":
mask = df[act["criteria_column"]] == act["criteria"]
total = df.loc[mask, act["sum_column"]].sum()
df[act["target"]] = total
else:
raise ValueError(f"Unsupported operation: {op}")
return df
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 4. GRADIO UI
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def run_editor(files: List[gr.File], command: str):
if not files:
return None, "β οΈ Please upload at least one CSV file.", None
# Load uploaded CSVs into a dictionary
uploads = {
pathlib.Path(f.name).name: pd.read_csv(f.name)
for f in files
}
# Treat the first file as the main dataset
main_name = list(uploads.keys())[0]
df = uploads[main_name]
# Generate plan
try:
plan = plan_from_command(command)
except Exception as e:
return None, f"β LLM error: {e}", None
# Apply actions
try:
for act in plan["actions"]:
df = apply_action(df, uploads, act)
except Exception as e:
return None, f"β Execution error: {e}", None
# Write modified CSV to a temp file and return
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".csv")
df.to_csv(tmp.name, index=False)
return df.head(20), "β
Success! Download below.", tmp.name
with gr.Blocks(title="AI CSV Editor (HF, CPU)") as demo:
gr.Markdown("## AI-powered CSV Editor \n"
"1. Upload one main CSV (first) plus any lookup tables \n"
"2. Type a spreadsheet-style instruction \n"
"3. Download the modified CSV")
csv_files = gr.Files(file_types=[".csv"], label="Upload CSV file(s)")
cmd_box = gr.Textbox(lines=2, placeholder="e.g. concat First Last β FullName")
run_btn = gr.Button("Apply")
preview = gr.Dataframe(label="Preview (first 20 rows)")
status = gr.Markdown()
download = gr.File(label="Download Result")
run_btn.click(
fn=run_editor,
inputs=[csv_files, cmd_box],
outputs=[preview, status, download]
)
if __name__ == "__main__":
demo.launch()
|