Spaces:
Runtime error
Runtime error
File size: 17,404 Bytes
45ee559 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
import copy
import os
import unittest
import torch
from torch import nn, optim
from tests import get_tests_input_path
from TTS.tts.configs.shared_configs import CapacitronVAEConfig, GSTConfig
from TTS.tts.configs.tacotron_config import TacotronConfig
from TTS.tts.layers.losses import L1LossMasked
from TTS.tts.models.tacotron import Tacotron
from TTS.utils.audio import AudioProcessor
# pylint: disable=unused-variable
torch.manual_seed(1)
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
config_global = TacotronConfig(num_chars=32, num_speakers=5, out_channels=513, decoder_output_dim=80)
ap = AudioProcessor(**config_global.audio)
WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav")
def count_parameters(model):
r"""Count number of trainable parameters in a network"""
return sum(p.numel() for p in model.parameters() if p.requires_grad)
class TacotronTrainTest(unittest.TestCase):
@staticmethod
def test_train_step():
config = config_global.copy()
config.use_speaker_embedding = False
config.num_speakers = 1
input_dummy = torch.randint(0, 24, (8, 128)).long().to(device)
input_lengths = torch.randint(100, 129, (8,)).long().to(device)
input_lengths[-1] = 128
mel_spec = torch.rand(8, 30, config.audio["num_mels"]).to(device)
linear_spec = torch.rand(8, 30, config.audio["fft_size"] // 2 + 1).to(device)
mel_lengths = torch.randint(20, 30, (8,)).long().to(device)
mel_lengths[-1] = mel_spec.size(1)
stop_targets = torch.zeros(8, 30, 1).float().to(device)
for idx in mel_lengths:
stop_targets[:, int(idx.item()) :, 0] = 1.0
stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // config.r, -1)
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze()
criterion = L1LossMasked(seq_len_norm=False).to(device)
criterion_st = nn.BCEWithLogitsLoss().to(device)
model = Tacotron(config).to(device) # FIXME: missing num_speakers parameter to Tacotron ctor
model.train()
print(" > Num parameters for Tacotron model:%s" % (count_parameters(model)))
model_ref = copy.deepcopy(model)
count = 0
for param, param_ref in zip(model.parameters(), model_ref.parameters()):
assert (param - param_ref).sum() == 0, param
count += 1
optimizer = optim.Adam(model.parameters(), lr=config.lr)
for _ in range(5):
outputs = model.forward(input_dummy, input_lengths, mel_spec, mel_lengths)
optimizer.zero_grad()
loss = criterion(outputs["decoder_outputs"], mel_spec, mel_lengths)
stop_loss = criterion_st(outputs["stop_tokens"], stop_targets)
loss = loss + criterion(outputs["model_outputs"], linear_spec, mel_lengths) + stop_loss
loss.backward()
optimizer.step()
# check parameter changes
count = 0
for param, param_ref in zip(model.parameters(), model_ref.parameters()):
# ignore pre-higway layer since it works conditional
# if count not in [145, 59]:
assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format(
count, param.shape, param, param_ref
)
count += 1
class MultiSpeakeTacotronTrainTest(unittest.TestCase):
@staticmethod
def test_train_step():
config = config_global.copy()
config.use_speaker_embedding = True
config.num_speakers = 5
input_dummy = torch.randint(0, 24, (8, 128)).long().to(device)
input_lengths = torch.randint(100, 129, (8,)).long().to(device)
input_lengths[-1] = 128
mel_spec = torch.rand(8, 30, config.audio["num_mels"]).to(device)
linear_spec = torch.rand(8, 30, config.audio["fft_size"] // 2 + 1).to(device)
mel_lengths = torch.randint(20, 30, (8,)).long().to(device)
mel_lengths[-1] = mel_spec.size(1)
stop_targets = torch.zeros(8, 30, 1).float().to(device)
speaker_ids = torch.randint(0, 5, (8,)).long().to(device)
for idx in mel_lengths:
stop_targets[:, int(idx.item()) :, 0] = 1.0
stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // config.r, -1)
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze()
criterion = L1LossMasked(seq_len_norm=False).to(device)
criterion_st = nn.BCEWithLogitsLoss().to(device)
config.d_vector_dim = 55
model = Tacotron(config).to(device) # FIXME: missing num_speakers parameter to Tacotron ctor
model.train()
print(" > Num parameters for Tacotron model:%s" % (count_parameters(model)))
model_ref = copy.deepcopy(model)
count = 0
for param, param_ref in zip(model.parameters(), model_ref.parameters()):
assert (param - param_ref).sum() == 0, param
count += 1
optimizer = optim.Adam(model.parameters(), lr=config.lr)
for _ in range(5):
outputs = model.forward(
input_dummy, input_lengths, mel_spec, mel_lengths, aux_input={"speaker_ids": speaker_ids}
)
optimizer.zero_grad()
loss = criterion(outputs["decoder_outputs"], mel_spec, mel_lengths)
stop_loss = criterion_st(outputs["stop_tokens"], stop_targets)
loss = loss + criterion(outputs["model_outputs"], linear_spec, mel_lengths) + stop_loss
loss.backward()
optimizer.step()
# check parameter changes
count = 0
for param, param_ref in zip(model.parameters(), model_ref.parameters()):
# ignore pre-higway layer since it works conditional
# if count not in [145, 59]:
assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format(
count, param.shape, param, param_ref
)
count += 1
class TacotronGSTTrainTest(unittest.TestCase):
@staticmethod
def test_train_step():
config = config_global.copy()
config.use_speaker_embedding = True
config.num_speakers = 10
config.use_gst = True
config.gst = GSTConfig()
# with random gst mel style
input_dummy = torch.randint(0, 24, (8, 128)).long().to(device)
input_lengths = torch.randint(100, 129, (8,)).long().to(device)
input_lengths[-1] = 128
mel_spec = torch.rand(8, 120, config.audio["num_mels"]).to(device)
linear_spec = torch.rand(8, 120, config.audio["fft_size"] // 2 + 1).to(device)
mel_lengths = torch.randint(20, 120, (8,)).long().to(device)
mel_lengths[-1] = 120
stop_targets = torch.zeros(8, 120, 1).float().to(device)
speaker_ids = torch.randint(0, 5, (8,)).long().to(device)
for idx in mel_lengths:
stop_targets[:, int(idx.item()) :, 0] = 1.0
stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // config.r, -1)
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze()
criterion = L1LossMasked(seq_len_norm=False).to(device)
criterion_st = nn.BCEWithLogitsLoss().to(device)
config.use_gst = True
config.gst = GSTConfig()
model = Tacotron(config).to(device) # FIXME: missing num_speakers parameter to Tacotron ctor
model.train()
# print(model)
print(" > Num parameters for Tacotron GST model:%s" % (count_parameters(model)))
model_ref = copy.deepcopy(model)
count = 0
for param, param_ref in zip(model.parameters(), model_ref.parameters()):
assert (param - param_ref).sum() == 0, param
count += 1
optimizer = optim.Adam(model.parameters(), lr=config.lr)
for _ in range(10):
outputs = model.forward(
input_dummy, input_lengths, mel_spec, mel_lengths, aux_input={"speaker_ids": speaker_ids}
)
optimizer.zero_grad()
loss = criterion(outputs["decoder_outputs"], mel_spec, mel_lengths)
stop_loss = criterion_st(outputs["stop_tokens"], stop_targets)
loss = loss + criterion(outputs["model_outputs"], linear_spec, mel_lengths) + stop_loss
loss.backward()
optimizer.step()
# check parameter changes
count = 0
for param, param_ref in zip(model.parameters(), model_ref.parameters()):
# ignore pre-higway layer since it works conditional
assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format(
count, param.shape, param, param_ref
)
count += 1
# with file gst style
mel_spec = (
torch.FloatTensor(ap.melspectrogram(ap.load_wav(WAV_FILE)))[:, :120].unsqueeze(0).transpose(1, 2).to(device)
)
mel_spec = mel_spec.repeat(8, 1, 1)
input_dummy = torch.randint(0, 24, (8, 128)).long().to(device)
input_lengths = torch.randint(100, 129, (8,)).long().to(device)
input_lengths[-1] = 128
linear_spec = torch.rand(8, mel_spec.size(1), config.audio["fft_size"] // 2 + 1).to(device)
mel_lengths = torch.randint(20, mel_spec.size(1), (8,)).long().to(device)
mel_lengths[-1] = mel_spec.size(1)
stop_targets = torch.zeros(8, mel_spec.size(1), 1).float().to(device)
speaker_ids = torch.randint(0, 5, (8,)).long().to(device)
for idx in mel_lengths:
stop_targets[:, int(idx.item()) :, 0] = 1.0
stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // config.r, -1)
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze()
criterion = L1LossMasked(seq_len_norm=False).to(device)
criterion_st = nn.BCEWithLogitsLoss().to(device)
model = Tacotron(config).to(device) # FIXME: missing num_speakers parameter to Tacotron ctor
model.train()
# print(model)
print(" > Num parameters for Tacotron GST model:%s" % (count_parameters(model)))
model_ref = copy.deepcopy(model)
count = 0
for param, param_ref in zip(model.parameters(), model_ref.parameters()):
assert (param - param_ref).sum() == 0, param
count += 1
optimizer = optim.Adam(model.parameters(), lr=config.lr)
for _ in range(10):
outputs = model.forward(
input_dummy, input_lengths, mel_spec, mel_lengths, aux_input={"speaker_ids": speaker_ids}
)
optimizer.zero_grad()
loss = criterion(outputs["decoder_outputs"], mel_spec, mel_lengths)
stop_loss = criterion_st(outputs["stop_tokens"], stop_targets)
loss = loss + criterion(outputs["model_outputs"], linear_spec, mel_lengths) + stop_loss
loss.backward()
optimizer.step()
# check parameter changes
count = 0
for param, param_ref in zip(model.parameters(), model_ref.parameters()):
# ignore pre-higway layer since it works conditional
assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format(
count, param.shape, param, param_ref
)
count += 1
class TacotronCapacitronTrainTest(unittest.TestCase):
@staticmethod
def test_train_step():
config = TacotronConfig(
num_chars=32,
num_speakers=10,
use_speaker_embedding=True,
out_channels=513,
decoder_output_dim=80,
use_capacitron_vae=True,
capacitron_vae=CapacitronVAEConfig(),
optimizer="CapacitronOptimizer",
optimizer_params={
"RAdam": {"betas": [0.9, 0.998], "weight_decay": 1e-6},
"SGD": {"lr": 1e-5, "momentum": 0.9},
},
)
batch = dict({})
batch["text_input"] = torch.randint(0, 24, (8, 128)).long().to(device)
batch["text_lengths"] = torch.randint(100, 129, (8,)).long().to(device)
batch["text_lengths"] = torch.sort(batch["text_lengths"], descending=True)[0]
batch["text_lengths"][0] = 128
batch["linear_input"] = torch.rand(8, 120, config.audio["fft_size"] // 2 + 1).to(device)
batch["mel_input"] = torch.rand(8, 120, config.audio["num_mels"]).to(device)
batch["mel_lengths"] = torch.randint(20, 120, (8,)).long().to(device)
batch["mel_lengths"] = torch.sort(batch["mel_lengths"], descending=True)[0]
batch["mel_lengths"][0] = 120
batch["stop_targets"] = torch.zeros(8, 120, 1).float().to(device)
batch["stop_target_lengths"] = torch.randint(0, 120, (8,)).to(device)
batch["speaker_ids"] = torch.randint(0, 5, (8,)).long().to(device)
batch["d_vectors"] = None
for idx in batch["mel_lengths"]:
batch["stop_targets"][:, int(idx.item()) :, 0] = 1.0
batch["stop_targets"] = batch["stop_targets"].view(
batch["text_input"].shape[0], batch["stop_targets"].size(1) // config.r, -1
)
batch["stop_targets"] = (batch["stop_targets"].sum(2) > 0.0).unsqueeze(2).float().squeeze()
model = Tacotron(config).to(device)
criterion = model.get_criterion()
optimizer = model.get_optimizer()
model.train()
print(" > Num parameters for Tacotron with Capacitron VAE model:%s" % (count_parameters(model)))
model_ref = copy.deepcopy(model)
count = 0
for param, param_ref in zip(model.parameters(), model_ref.parameters()):
assert (param - param_ref).sum() == 0, param
count += 1
for _ in range(10):
_, loss_dict = model.train_step(batch, criterion)
optimizer.zero_grad()
loss_dict["capacitron_vae_beta_loss"].backward()
optimizer.first_step()
loss_dict["loss"].backward()
optimizer.step()
# check parameter changes
count = 0
for param, param_ref in zip(model.parameters(), model_ref.parameters()):
# ignore pre-higway layer since it works conditional
assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format(
count, param.shape, param, param_ref
)
count += 1
class SCGSTMultiSpeakeTacotronTrainTest(unittest.TestCase):
@staticmethod
def test_train_step():
config = config_global.copy()
config.use_d_vector_file = True
config.use_gst = True
config.gst = GSTConfig()
input_dummy = torch.randint(0, 24, (8, 128)).long().to(device)
input_lengths = torch.randint(100, 129, (8,)).long().to(device)
input_lengths[-1] = 128
mel_spec = torch.rand(8, 30, config.audio["num_mels"]).to(device)
linear_spec = torch.rand(8, 30, config.audio["fft_size"] // 2 + 1).to(device)
mel_lengths = torch.randint(20, 30, (8,)).long().to(device)
mel_lengths[-1] = mel_spec.size(1)
stop_targets = torch.zeros(8, 30, 1).float().to(device)
speaker_embeddings = torch.rand(8, 55).to(device)
for idx in mel_lengths:
stop_targets[:, int(idx.item()) :, 0] = 1.0
stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // config.r, -1)
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze()
criterion = L1LossMasked(seq_len_norm=False).to(device)
criterion_st = nn.BCEWithLogitsLoss().to(device)
config.d_vector_dim = 55
model = Tacotron(config).to(device) # FIXME: missing num_speakers parameter to Tacotron ctor
model.train()
print(" > Num parameters for Tacotron model:%s" % (count_parameters(model)))
model_ref = copy.deepcopy(model)
count = 0
for param, param_ref in zip(model.parameters(), model_ref.parameters()):
assert (param - param_ref).sum() == 0, param
count += 1
optimizer = optim.Adam(model.parameters(), lr=config.lr)
for _ in range(5):
outputs = model.forward(
input_dummy, input_lengths, mel_spec, mel_lengths, aux_input={"d_vectors": speaker_embeddings}
)
optimizer.zero_grad()
loss = criterion(outputs["decoder_outputs"], mel_spec, mel_lengths)
stop_loss = criterion_st(outputs["stop_tokens"], stop_targets)
loss = loss + criterion(outputs["model_outputs"], linear_spec, mel_lengths) + stop_loss
loss.backward()
optimizer.step()
# check parameter changes
count = 0
for name_param, param_ref in zip(model.named_parameters(), model_ref.parameters()):
# ignore pre-higway layer since it works conditional
# if count not in [145, 59]:
name, param = name_param
if name == "gst_layer.encoder.recurrence.weight_hh_l0":
continue
assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format(
count, param.shape, param, param_ref
)
count += 1
|