File size: 7,322 Bytes
45ee559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import functools
import random
import unittest

import torch

from TTS.config.shared_configs import BaseDatasetConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.utils.data import get_length_balancer_weights
from TTS.tts.utils.languages import get_language_balancer_weights
from TTS.tts.utils.speakers import get_speaker_balancer_weights
from TTS.utils.samplers import BucketBatchSampler, PerfectBatchSampler

# Fixing random state to avoid random fails
torch.manual_seed(0)

dataset_config_en = BaseDatasetConfig(
    formatter="ljspeech",
    meta_file_train="metadata.csv",
    meta_file_val="metadata.csv",
    path="tests/data/ljspeech",
    language="en",
)

dataset_config_pt = BaseDatasetConfig(
    formatter="ljspeech",
    meta_file_train="metadata.csv",
    meta_file_val="metadata.csv",
    path="tests/data/ljspeech",
    language="pt-br",
)

# Adding the EN samples twice to create a language unbalanced dataset
train_samples, eval_samples = load_tts_samples(
    [dataset_config_en, dataset_config_en, dataset_config_pt], eval_split=True
)

# gerenate a speaker unbalanced dataset
for i, sample in enumerate(train_samples):
    if i < 5:
        sample["speaker_name"] = "ljspeech-0"
    else:
        sample["speaker_name"] = "ljspeech-1"


def is_balanced(lang_1, lang_2):
    return 0.85 < lang_1 / lang_2 < 1.2


class TestSamplers(unittest.TestCase):
    def test_language_random_sampler(self):  # pylint: disable=no-self-use
        random_sampler = torch.utils.data.RandomSampler(train_samples)
        ids = functools.reduce(lambda a, b: a + b, [list(random_sampler) for i in range(100)])
        en, pt = 0, 0
        for index in ids:
            if train_samples[index]["language"] == "en":
                en += 1
            else:
                pt += 1

        assert not is_balanced(en, pt), "Random sampler is supposed to be unbalanced"

    def test_language_weighted_random_sampler(self):  # pylint: disable=no-self-use
        weighted_sampler = torch.utils.data.sampler.WeightedRandomSampler(
            get_language_balancer_weights(train_samples), len(train_samples)
        )
        ids = functools.reduce(lambda a, b: a + b, [list(weighted_sampler) for i in range(100)])
        en, pt = 0, 0
        for index in ids:
            if train_samples[index]["language"] == "en":
                en += 1
            else:
                pt += 1

        assert is_balanced(en, pt), "Language Weighted sampler is supposed to be balanced"

    def test_speaker_weighted_random_sampler(self):  # pylint: disable=no-self-use
        weighted_sampler = torch.utils.data.sampler.WeightedRandomSampler(
            get_speaker_balancer_weights(train_samples), len(train_samples)
        )
        ids = functools.reduce(lambda a, b: a + b, [list(weighted_sampler) for i in range(100)])
        spk1, spk2 = 0, 0
        for index in ids:
            if train_samples[index]["speaker_name"] == "ljspeech-0":
                spk1 += 1
            else:
                spk2 += 1

        assert is_balanced(spk1, spk2), "Speaker Weighted sampler is supposed to be balanced"

    def test_perfect_sampler(self):  # pylint: disable=no-self-use
        classes = set()
        for item in train_samples:
            classes.add(item["speaker_name"])

        sampler = PerfectBatchSampler(
            train_samples,
            classes,
            batch_size=2 * 3,  # total batch size
            num_classes_in_batch=2,
            label_key="speaker_name",
            shuffle=False,
            drop_last=True,
        )
        batchs = functools.reduce(lambda a, b: a + b, [list(sampler) for i in range(100)])
        for batch in batchs:
            spk1, spk2 = 0, 0
            # for in each batch
            for index in batch:
                if train_samples[index]["speaker_name"] == "ljspeech-0":
                    spk1 += 1
                else:
                    spk2 += 1
            assert spk1 == spk2, "PerfectBatchSampler is supposed to be perfectly balanced"

    def test_perfect_sampler_shuffle(self):  # pylint: disable=no-self-use
        classes = set()
        for item in train_samples:
            classes.add(item["speaker_name"])

        sampler = PerfectBatchSampler(
            train_samples,
            classes,
            batch_size=2 * 3,  # total batch size
            num_classes_in_batch=2,
            label_key="speaker_name",
            shuffle=True,
            drop_last=False,
        )
        batchs = functools.reduce(lambda a, b: a + b, [list(sampler) for i in range(100)])
        for batch in batchs:
            spk1, spk2 = 0, 0
            # for in each batch
            for index in batch:
                if train_samples[index]["speaker_name"] == "ljspeech-0":
                    spk1 += 1
                else:
                    spk2 += 1
            assert spk1 == spk2, "PerfectBatchSampler is supposed to be perfectly balanced"

    def test_length_weighted_random_sampler(self):  # pylint: disable=no-self-use
        for _ in range(1000):
            # gerenate a lenght unbalanced dataset with random max/min audio lenght
            min_audio = random.randrange(1, 22050)
            max_audio = random.randrange(44100, 220500)
            for idx, item in enumerate(train_samples):
                # increase the diversity of durations
                random_increase = random.randrange(100, 1000)
                if idx < 5:
                    item["audio_length"] = min_audio + random_increase
                else:
                    item["audio_length"] = max_audio + random_increase

            weighted_sampler = torch.utils.data.sampler.WeightedRandomSampler(
                get_length_balancer_weights(train_samples, num_buckets=2), len(train_samples)
            )
            ids = functools.reduce(lambda a, b: a + b, [list(weighted_sampler) for i in range(100)])
            len1, len2 = 0, 0
            for index in ids:
                if train_samples[index]["audio_length"] < max_audio:
                    len1 += 1
                else:
                    len2 += 1
            assert is_balanced(len1, len2), "Length Weighted sampler is supposed to be balanced"

    def test_bucket_batch_sampler(self):
        bucket_size_multiplier = 2
        sampler = range(len(train_samples))
        sampler = BucketBatchSampler(
            sampler,
            data=train_samples,
            batch_size=7,
            drop_last=True,
            sort_key=lambda x: len(x["text"]),
            bucket_size_multiplier=bucket_size_multiplier,
        )

        # check if the samples are sorted by text lenght whuile bucketing
        min_text_len_in_bucket = 0
        bucket_items = []
        for batch_idx, batch in enumerate(list(sampler)):
            if (batch_idx + 1) % bucket_size_multiplier == 0:
                for bucket_item in bucket_items:
                    self.assertLessEqual(min_text_len_in_bucket, len(train_samples[bucket_item]["text"]))
                    min_text_len_in_bucket = len(train_samples[bucket_item]["text"])
                min_text_len_in_bucket = 0
                bucket_items = []
            else:
                bucket_items += batch

        # check sampler length
        self.assertEqual(len(sampler), len(train_samples) // 7)