Spaces:
Runtime error
Runtime error
File size: 7,204 Bytes
9d72f44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
from os import listdir, path
import numpy as np
import scipy, cv2, os, sys, argparse
import dlib, json, subprocess
from tqdm import tqdm
from glob import glob
import torch
sys.path.append('../')
import audio
import face_detection
from models import Wav2Lip
parser = argparse.ArgumentParser(description='Code to generate results for test filelists')
parser.add_argument('--filelist', type=str,
help='Filepath of filelist file to read', required=True)
parser.add_argument('--results_dir', type=str, help='Folder to save all results into',
required=True)
parser.add_argument('--data_root', type=str, required=True)
parser.add_argument('--checkpoint_path', type=str,
help='Name of saved checkpoint to load weights from', required=True)
parser.add_argument('--pads', nargs='+', type=int, default=[0, 0, 0, 0],
help='Padding (top, bottom, left, right)')
parser.add_argument('--face_det_batch_size', type=int,
help='Single GPU batch size for face detection', default=64)
parser.add_argument('--wav2lip_batch_size', type=int, help='Batch size for Wav2Lip', default=128)
# parser.add_argument('--resize_factor', default=1, type=int)
args = parser.parse_args()
args.img_size = 96
def get_smoothened_boxes(boxes, T):
for i in range(len(boxes)):
if i + T > len(boxes):
window = boxes[len(boxes) - T:]
else:
window = boxes[i : i + T]
boxes[i] = np.mean(window, axis=0)
return boxes
def face_detect(images):
batch_size = args.face_det_batch_size
while 1:
predictions = []
try:
for i in range(0, len(images), batch_size):
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
except RuntimeError:
if batch_size == 1:
raise RuntimeError('Image too big to run face detection on GPU')
batch_size //= 2
args.face_det_batch_size = batch_size
print('Recovering from OOM error; New batch size: {}'.format(batch_size))
continue
break
results = []
pady1, pady2, padx1, padx2 = args.pads
for rect, image in zip(predictions, images):
if rect is None:
raise ValueError('Face not detected!')
y1 = max(0, rect[1] - pady1)
y2 = min(image.shape[0], rect[3] + pady2)
x1 = max(0, rect[0] - padx1)
x2 = min(image.shape[1], rect[2] + padx2)
results.append([x1, y1, x2, y2])
boxes = get_smoothened_boxes(np.array(results), T=5)
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2), True] for image, (x1, y1, x2, y2) in zip(images, boxes)]
return results
def datagen(frames, face_det_results, mels):
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
for i, m in enumerate(mels):
if i >= len(frames): raise ValueError('Equal or less lengths only')
frame_to_save = frames[i].copy()
face, coords, valid_frame = face_det_results[i].copy()
if not valid_frame:
continue
face = cv2.resize(face, (args.img_size, args.img_size))
img_batch.append(face)
mel_batch.append(m)
frame_batch.append(frame_to_save)
coords_batch.append(coords)
if len(img_batch) >= args.wav2lip_batch_size:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, args.img_size//2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
yield img_batch, mel_batch, frame_batch, coords_batch
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
if len(img_batch) > 0:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, args.img_size//2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
yield img_batch, mel_batch, frame_batch, coords_batch
fps = 25
mel_step_size = 16
mel_idx_multiplier = 80./fps
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('Using {} for inference.'.format(device))
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D,
flip_input=False, device=device)
def _load(checkpoint_path):
if device == 'cuda':
checkpoint = torch.load(checkpoint_path)
else:
checkpoint = torch.load(checkpoint_path,
map_location=lambda storage, loc: storage)
return checkpoint
def load_model(path):
model = Wav2Lip()
print("Load checkpoint from: {}".format(path))
checkpoint = _load(path)
s = checkpoint["state_dict"]
new_s = {}
for k, v in s.items():
new_s[k.replace('module.', '')] = v
model.load_state_dict(new_s)
model = model.to(device)
return model.eval()
model = load_model(args.checkpoint_path)
def main():
assert args.data_root is not None
data_root = args.data_root
if not os.path.isdir(args.results_dir): os.makedirs(args.results_dir)
with open(args.filelist, 'r') as filelist:
lines = filelist.readlines()
for idx, line in enumerate(tqdm(lines)):
audio_src, video = line.strip().split()
audio_src = os.path.join(data_root, audio_src) + '.mp4'
video = os.path.join(data_root, video) + '.mp4'
command = 'ffmpeg -loglevel panic -y -i {} -strict -2 {}'.format(audio_src, '../temp/temp.wav')
subprocess.call(command, shell=True)
temp_audio = '../temp/temp.wav'
wav = audio.load_wav(temp_audio, 16000)
mel = audio.melspectrogram(wav)
if np.isnan(mel.reshape(-1)).sum() > 0:
continue
mel_chunks = []
i = 0
while 1:
start_idx = int(i * mel_idx_multiplier)
if start_idx + mel_step_size > len(mel[0]):
break
mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size])
i += 1
video_stream = cv2.VideoCapture(video)
full_frames = []
while 1:
still_reading, frame = video_stream.read()
if not still_reading or len(full_frames) > len(mel_chunks):
video_stream.release()
break
full_frames.append(frame)
if len(full_frames) < len(mel_chunks):
continue
full_frames = full_frames[:len(mel_chunks)]
try:
face_det_results = face_detect(full_frames.copy())
except ValueError as e:
continue
batch_size = args.wav2lip_batch_size
gen = datagen(full_frames.copy(), face_det_results, mel_chunks)
for i, (img_batch, mel_batch, frames, coords) in enumerate(gen):
if i == 0:
frame_h, frame_w = full_frames[0].shape[:-1]
out = cv2.VideoWriter('../temp/result.avi',
cv2.VideoWriter_fourcc(*'DIVX'), fps, (frame_w, frame_h))
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
with torch.no_grad():
pred = model(mel_batch, img_batch)
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
for pl, f, c in zip(pred, frames, coords):
y1, y2, x1, x2 = c
pl = cv2.resize(pl.astype(np.uint8), (x2 - x1, y2 - y1))
f[y1:y2, x1:x2] = pl
out.write(f)
out.release()
vid = os.path.join(args.results_dir, '{}.mp4'.format(idx))
command = 'ffmpeg -loglevel panic -y -i {} -i {} -strict -2 -q:v 1 {}'.format(temp_audio,
'../temp/result.avi', vid)
subprocess.call(command, shell=True)
if __name__ == '__main__':
main()
|