Spaces:
Sleeping
Sleeping
File size: 12,205 Bytes
ada4b81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
import torch
from torch import nn, Tensor
from torch.nn import Module
import torch.nn.functional as F
from einops import rearrange, repeat, pack
from pytorch_custom_utils import save_load
from beartype import beartype
from beartype.typing import Union, Tuple, Callable, Optional, Any
from einops import rearrange, repeat, pack
from x_transformers import Decoder
from x_transformers.x_transformers import LayerIntermediates
from x_transformers.autoregressive_wrapper import (
eval_decorator,
top_k,
)
from .miche_conditioner import PointConditioner
from functools import partial
from tqdm import tqdm
from .data_utils import discretize
# helper functions
def exists(v):
return v is not None
def default(v, d):
return v if exists(v) else d
def first(it):
return it[0]
def divisible_by(num, den):
return (num % den) == 0
def pad_at_dim(t, padding, dim = -1, value = 0):
ndim = t.ndim
right_dims = (ndim - dim - 1) if dim >= 0 else (-dim - 1)
zeros = (0, 0) * right_dims
return F.pad(t, (*zeros, *padding), value = value)
# main class of auto-regressive Transformer
@save_load()
class MeshTransformer(Module):
@beartype
def __init__(
self,
*,
dim: Union[int, Tuple[int, int]] = 512, # hidden size of Transformer
max_seq_len = 9600, # max sequence length
flash_attn = True, # wether to use flash attention
attn_depth = 12, # number of layers
attn_dim_head = 64, # dim for each head
attn_heads = 16, # number of heads
attn_kwargs: dict = dict(
ff_glu = True,
num_mem_kv = 4,
attn_qk_norm = True,
),
dropout = 0.,
pad_id = -1,
coor_continuous_range = (-1., 1.),
num_discrete_coors = 128,
block_size = 8,
offset_size = 16,
mode = 'vertices',
special_token = -2,
use_special_block = False,
conditioned_on_pc = False,
encoder_name = 'miche-256-feature',
encoder_freeze = True,
):
super().__init__()
if use_special_block:
# block_ids, offset_ids, special_block_ids
vocab_size = block_size**3 + offset_size**3 + block_size**3
self.sp_block_embed = nn.Parameter(torch.randn(1, dim))
else:
# block_ids, offset_ids, special_token
vocab_size = block_size**3 + offset_size**3 + 1
self.special_token = special_token
self.special_token_cb = block_size**3 + offset_size**3
self.use_special_block = use_special_block
self.sos_token = nn.Parameter(torch.randn(dim))
self.eos_token_id = vocab_size
self.mode = mode
self.token_embed = nn.Embedding(vocab_size + 1, dim)
self.num_discrete_coors = num_discrete_coors
self.coor_continuous_range = coor_continuous_range
self.block_size = block_size
self.offset_size = offset_size
self.abs_pos_emb = nn.Embedding(max_seq_len, dim)
self.max_seq_len = max_seq_len
self.conditioner = None
self.conditioned_on_pc = conditioned_on_pc
cross_attn_dim_context = None
self.block_embed = nn.Parameter(torch.randn(1, dim))
self.offset_embed = nn.Parameter(torch.randn(1, dim))
assert self.block_size * self.offset_size == self.num_discrete_coors
# load point_cloud encoder
if conditioned_on_pc:
print(f'Point cloud encoder: {encoder_name} | freeze: {encoder_freeze}')
self.conditioner = PointConditioner(model_name=encoder_name, freeze=encoder_freeze)
cross_attn_dim_context = self.conditioner.dim_latent
else:
raise NotImplementedError
# main autoregressive attention network
self.decoder = Decoder(
dim = dim,
depth = attn_depth,
dim_head = attn_dim_head,
heads = attn_heads,
attn_flash = flash_attn,
attn_dropout = dropout,
ff_dropout = dropout,
cross_attend = conditioned_on_pc,
cross_attn_dim_context = cross_attn_dim_context,
cross_attn_num_mem_kv = 4, # needed for preventing nan when dropping out text condition
**attn_kwargs
)
self.to_logits = nn.Linear(dim, vocab_size + 1)
self.pad_id = pad_id
self.discretize_face_coords = partial(
discretize,
num_discrete = num_discrete_coors,
continuous_range = coor_continuous_range
)
@property
def device(self):
return next(self.parameters()).device
@eval_decorator
@torch.no_grad()
@beartype
def generate(
self,
prompt: Optional[Tensor] = None,
pc: Optional[Tensor] = None,
cond_embeds: Optional[Tensor] = None,
batch_size: Optional[int] = None,
filter_logits_fn: Callable = top_k,
filter_kwargs: dict = dict(),
temperature = 1.,
return_codes = False,
cache_kv = True,
max_seq_len = None,
face_coords_to_file: Optional[Callable[[Tensor], Any]] = None,
tqdm_position = 0,
):
max_seq_len = default(max_seq_len, self.max_seq_len)
if exists(prompt):
assert not exists(batch_size)
prompt = rearrange(prompt, 'b ... -> b (...)')
assert prompt.shape[-1] <= self.max_seq_len
batch_size = prompt.shape[0]
# encode point cloud
if cond_embeds is None:
if self.conditioned_on_pc:
cond_embeds = self.conditioner(pc = pc)
batch_size = default(batch_size, 1)
codes = default(prompt, torch.empty((batch_size, 0), dtype = torch.long, device = self.device))
curr_length = codes.shape[-1]
cache = None
# predict tokens auto-regressively
for i in tqdm(range(curr_length, max_seq_len), position=tqdm_position,
desc=f'Process: {tqdm_position}', dynamic_ncols=True, leave=False):
output = self.forward_on_codes(
codes,
return_loss = False,
return_cache = cache_kv,
append_eos = False,
cond_embeds = cond_embeds,
cache = cache
)
if cache_kv:
logits, cache = output
else:
logits = output
# sample code from logits
logits = logits[:, -1]
filtered_logits = filter_logits_fn(logits, **filter_kwargs)
probs = F.softmax(filtered_logits / temperature, dim = -1)
sample = torch.multinomial(probs, 1)
codes, _ = pack([codes, sample], 'b *')
# check for all rows to have [eos] to terminate
is_eos_codes = (codes == self.eos_token_id)
if is_eos_codes.any(dim = -1).all():
break
# mask out to padding anything after the first eos
mask = is_eos_codes.float().cumsum(dim = -1) >= 1
codes = codes.masked_fill(mask, self.pad_id)
# early return of raw residual quantizer codes
if return_codes:
# codes = rearrange(codes, 'b (n q) -> b n q', q = 2)
if not self.use_special_block:
codes[codes == self.special_token_cb] = self.special_token
return codes
face_coords, face_mask = self.decode_codes(codes)
if not exists(face_coords_to_file):
return face_coords, face_mask
files = [face_coords_to_file(coords[mask]) for coords, mask in zip(face_coords, face_mask)]
return files
def forward(
self,
*,
codes: Optional[Tensor] = None,
cache: Optional[LayerIntermediates] = None,
**kwargs
):
# convert special tokens
if not self.use_special_block:
codes[codes == self.special_token] = self.special_token_cb
return self.forward_on_codes(codes, cache = cache, **kwargs)
def forward_on_codes(
self,
codes = None,
return_loss = True,
return_cache = False,
append_eos = True,
cache = None,
pc = None,
cond_embeds = None,
):
# handle conditions
attn_context_kwargs = dict()
if self.conditioned_on_pc:
assert exists(pc) ^ exists(cond_embeds), 'point cloud should be given'
# preprocess faces and vertices
if not exists(cond_embeds):
cond_embeds = self.conditioner(
pc = pc,
pc_embeds = cond_embeds,
)
attn_context_kwargs = dict(
context = cond_embeds,
context_mask = None,
)
# take care of codes that may be flattened
if codes.ndim > 2:
codes = rearrange(codes, 'b ... -> b (...)')
# prepare mask for position embedding of block and offset tokens
block_mask = (0 <= codes) & (codes < self.block_size**3)
offset_mask = (self.block_size**3 <= codes) & (codes < self.block_size**3 + self.offset_size**3)
if self.use_special_block:
sp_block_mask = (
self.block_size**3 + self.offset_size**3 <= codes
) & (
codes < self.block_size**3 + self.offset_size**3 + self.block_size**3
)
# get some variable
batch, seq_len, device = *codes.shape, codes.device
assert seq_len <= self.max_seq_len, \
f'received codes of length {seq_len} but needs to be less than {self.max_seq_len}'
# auto append eos token
if append_eos:
assert exists(codes)
code_lens = ((codes == self.pad_id).cumsum(dim = -1) == 0).sum(dim = -1)
codes = F.pad(codes, (0, 1), value = 0) # value=-1
batch_arange = torch.arange(batch, device = device)
batch_arange = rearrange(batch_arange, '... -> ... 1')
code_lens = rearrange(code_lens, '... -> ... 1')
codes[batch_arange, code_lens] = self.eos_token_id
# if returning loss, save the labels for cross entropy
if return_loss:
assert seq_len > 0
codes, labels = codes[:, :-1], codes
# token embed
codes = codes.masked_fill(codes == self.pad_id, 0)
codes = self.token_embed(codes)
# codebook embed + absolute positions
seq_arange = torch.arange(codes.shape[-2], device = device)
codes = codes + self.abs_pos_emb(seq_arange)
# add positional embedding for block and offset token
block_embed = repeat(self.block_embed, '1 d -> b n d', n = seq_len, b = batch)
offset_embed = repeat(self.offset_embed, '1 d -> b n d', n = seq_len, b = batch)
codes[block_mask] += block_embed[block_mask]
codes[offset_mask] += offset_embed[offset_mask]
if self.use_special_block:
sp_block_embed = repeat(self.sp_block_embed, '1 d -> b n d', n = seq_len, b = batch)
codes[sp_block_mask] += sp_block_embed[sp_block_mask]
# auto prepend sos token
sos = repeat(self.sos_token, 'd -> b d', b = batch)
codes, _ = pack([sos, codes], 'b * d')
# attention
attended, intermediates_with_cache = self.decoder(
codes,
cache = cache,
return_hiddens = True,
**attn_context_kwargs
)
# logits
logits = self.to_logits(attended)
if not return_loss:
if not return_cache:
return logits
return logits, intermediates_with_cache
# loss
ce_loss = F.cross_entropy(
rearrange(logits, 'b n c -> b c n'),
labels,
ignore_index = self.pad_id
)
return ce_loss
|