File size: 9,630 Bytes
c324d8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd4eb4b
c324d8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46d8cd4
c324d8c
 
 
46d8cd4
c324d8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46d8cd4
c324d8c
 
 
 
46d8cd4
c324d8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46d8cd4
c324d8c
 
 
 
 
 
 
 
cd4eb4b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, UNet2DConditionModel, LMSDiscreteScheduler
from tqdm.auto import tqdm
from torch import autocast
from PIL import Image
from matplotlib import pyplot as plt
import numpy
from torchvision import transforms as tfms
import shutil
# For video display:
import cv2
import os 
from utils import color_loss,latents_to_pil,pil_to_latent,sketch_loss
# Set device
torch_device =  "cpu"

vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae")

# Load the tokenizer and text encoder to tokenize and encode the text.
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")

# The UNet model for generating the latents.
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")

# The noise scheduler
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
vae = vae.to(torch_device)
text_encoder = text_encoder.to(torch_device)
unet = unet.to(torch_device)

scheduler.set_timesteps(15)

def generate_mixed_image(prompt1, prompt2,num_inference_steps=50,noised_image=False):
    mix_factor = 0.4 #@param
    height = 512                        # default height of Stable Diffusion
    width = 512                         # default width of Stable Diffusion
    num_inference_steps = num_inference_steps  #@param           # Number of denoising steps
    guidance_scale = 8                # Scale for classifier-free guidance
    generator = torch.manual_seed(32)   # Seed generator to create the inital latent noise
    batch_size = 1

    # Prep text
    # Embed both prompts
    text_input1 = tokenizer([prompt1], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
    with torch.no_grad():
        text_embeddings1 = text_encoder(text_input1.input_ids.to(torch_device))[0]
        text_input2 = tokenizer([prompt2], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
    with torch.no_grad():
        text_embeddings2 = text_encoder(text_input2.input_ids.to(torch_device))[0]
        # Take the average
    text_embeddings = (text_embeddings1*mix_factor + \
                    text_embeddings2*(1-mix_factor))
    # And the uncond. input as before:
    max_length = max(text_input1.input_ids.shape[-1],text_input2.input_ids.shape[-1])
    uncond_input = tokenizer(
        [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
    )
    with torch.no_grad():
        uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
        text_embeddings = torch.cat([uncond_embeddings, text_embeddings])

    # Prep Scheduler
    scheduler.set_timesteps(num_inference_steps)

    # Prep latents
    latents = torch.randn(
    (batch_size, unet.in_channels, height // 8, width // 8),
    generator=generator,
    )
    latents = latents.to(torch_device)
    latents = latents * scheduler.sigmas[0] # Need to scale to match k

    # Loop
    with autocast("cuda"):
        for i, t in tqdm(enumerate(scheduler.timesteps)):
            # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
            latent_model_input = torch.cat([latents] * 2)
            sigma = scheduler.sigmas[i]
            latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5)

            # predict the noise residual
            with torch.no_grad():
                noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]

            # perform guidance
            noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
            noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            # compute the previous noisy sample x_t -> x_t-1
            latents = scheduler.step(noise_pred, i, latents)["prev_sample"]
            
    if noised_image:
        output = generate_noised_version_of_image(latents_to_pil(latents,vae)[0])
    else:
        output = latents_to_pil(latents,vae)[0]

    return output

def generate_image(prompt,num_inference_steps=50,color_postprocessing=False,postporcessing_color=None,color_loss_scale=40,noised_image=False):
    #@title Store the predicted outputs and next frame for later viewing
    #prompt = 'A campfire (oil on canvas)' #
    height = 512                        # default height of Stable Diffusion
    width = 512                         # default width of Stable Diffusion
    num_inference_steps = num_inference_steps  #          # Number of denoising steps
    guidance_scale = 8 #         # Scale for classifier-free guidance
    generator = torch.manual_seed(32)   # Seed generator to create the inital latent noise
    batch_size = 1
    
    # Define the directory name
    directory_name = "steps"

    # Check if the directory exists, and if so, delete it
    if os.path.exists(directory_name):
        shutil.rmtree(directory_name)
    
    #Create the directory
    os.makedirs(directory_name)
    # Prep text
    text_input = tokenizer([prompt], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
    with torch.no_grad():
        text_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0]

    # And the uncond. input as before:
    max_length = text_input.input_ids.shape[-1]
    uncond_input = tokenizer(
        [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
    )
    with torch.no_grad():
        uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
        text_embeddings = torch.cat([uncond_embeddings, text_embeddings])


    # Prep Scheduler
    scheduler.set_timesteps(num_inference_steps)

    # Prep latents
    latents = torch.randn(
    (batch_size, unet.in_channels, height // 8, width // 8),
    generator=generator,
    )
    latents = latents.to(torch_device)
    latents = latents * scheduler.sigmas[0] # Need to scale to match k

    # Loop
    with autocast("cuda"):
        for i, t in tqdm(enumerate(scheduler.timesteps)):
            # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
            latent_model_input = torch.cat([latents] * 2)
            sigma = scheduler.sigmas[i]
            latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5)

            # predict the noise residual
            with torch.no_grad():
                noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]

            # perform CFG
            noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
            noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            #### ADDITIONAL GUIDANCE ###
            # Requires grad on the latents
            if color_postprocessing:
                latents = latents.detach().requires_grad_()

                # Get the predicted x0:
                latents_x0 = latents - sigma * noise_pred

                # Decode to image space
                denoised_images = vae.decode((1 / 0.18215) * latents_x0) / 2 + 0.5 # (0, 1)

                # Calculate loss
                #loss = sketch_loss(denoised_images) * color_loss_scale
                loss = color_loss(denoised_images,postporcessing_color) * color_loss_scale
                if i%10==0:
                    print(i, 'loss:', loss.item())

                # Get gradient
                cond_grad = -torch.autograd.grad(loss, latents)[0]

                # Modify the latents based on this gradient
                latents = latents.detach() + cond_grad * sigma**2


                ### And saving as before ###
                # Get the predicted x0:
                latents_x0 = latents - sigma * noise_pred
                im_t0 = latents_to_pil(latents_x0,vae)[0]

                # And the previous noisy sample x_t -> x_t-1
                latents = scheduler.step(noise_pred, i, latents)["prev_sample"]
                im_next = latents_to_pil(latents,vae)[0]

                # Combine the two images and save for later viewing
                im = Image.new('RGB', (1024, 512))
                im.paste(im_next, (0, 0))
                im.paste(im_t0, (512, 0))
                im.save(f'steps/{i:04}.jpeg')
                
            else:
                latents = scheduler.step(noise_pred, i, latents)["prev_sample"]

    if noised_image:
        output = generate_noised_version_of_image(latents_to_pil(latents,vae)[0])
    else:
        output = latents_to_pil(latents,vae)[0]

    return output

def generate_noised_version_of_image(pil_image):
    # View a noised version
    encoded = pil_to_latent(pil_image,vae)
    noise = torch.randn_like(encoded) # Random noise
    timestep = 150 # i.e. equivalent to that at 150/1000 training steps
    encoded_and_noised = scheduler.add_noise(encoded, noise, timestep)
    return latents_to_pil(encoded_and_noised,vae)[0] # Display



# if __name__ == "__main__":
#     prompt = 'A campfire (oil on canvas)'
#     color_loss_scale = 40
#     color_postprocessing = False
#     pil_image = generate_mixed_image("a dog", "a cat")
#     #pil_image = generate_image(prompt,color_postprocessing,color_loss_scale)
#     #pil_image = generate_noised_version_of_image(Image.open('output.png').resize((512, 512)))
#     pil_image.save("output1.png")