Spaces:
Runtime error
Runtime error
File size: 6,917 Bytes
63ea7df 7c0ce54 63ea7df 7c0ce54 63ea7df 9bedcbe 63ea7df 7c0ce54 63ea7df 7c0ce54 63ea7df 7c0ce54 9bedcbe 7c0ce54 63ea7df 7c0ce54 9bedcbe 7c0ce54 9bedcbe 7c0ce54 9bedcbe 7c0ce54 96f46f4 7c0ce54 9bedcbe 7c0ce54 9bedcbe 7c0ce54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
# To read the PDF
import PyPDF2
from pdfminer.high_level import extract_pages, extract_text
from pdfminer.layout import LTTextContainer, LTChar, LTRect, LTFigure
import pdfplumber
from PIL import Image
from pdf2image import convert_from_path
import pytesseract
import os
import torch
import soundfile as sf
from IPython.display import Audio
from datasets import load_dataset
from transformers import pipeline
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech
hf_name = 'pszemraj/led-large-book-summary'
summarizer = pipeline(
"summarization",
hf_name,
device=0 if torch.cuda.is_available() else -1,
)
def text_extraction(element):
# Extracting the text from the in-line text element
line_text = element.get_text()
# Find the formats of the text
# Initialize the list with all the formats that appeared in the line of text
line_formats = []
for text_line in element:
if isinstance(text_line, LTTextContainer):
# Iterating through each character in the line of text
for character in text_line:
if isinstance(character, LTChar):
# Append the font name of the character
line_formats.append(character.fontname)
# Append the font size of the character
line_formats.append(character.size)
# Find the unique font sizes and names in the line
format_per_line = list(set(line_formats))
# Return a tuple with the text in each line along with its format
return (line_text, format_per_line)
def read_pdf(pdf_path):
# create a PDF file object
pdfFileObj = open(pdf_path, 'rb')
# create a PDF reader object
pdfReaded = PyPDF2.PdfReader(pdfFileObj)
# Create the dictionary to extract text from each image
text_per_page = {}
# We extract the pages from the PDF
for pagenum, page in enumerate(extract_pages(pdf_path)):
print("Elaborating Page_" +str(pagenum))
# Initialize the variables needed for the text extraction from the page
pageObj = pdfReaded.pages[pagenum]
page_text = []
line_format = []
text_from_images = []
text_from_tables = []
page_content = []
# Initialize the number of the examined tables
table_num = 0
first_element= True
table_extraction_flag= False
# Open the pdf file
pdf = pdfplumber.open(pdf_path)
# Find the examined page
page_tables = pdf.pages[pagenum]
# Find the number of tables on the page
tables = page_tables.find_tables()
# Find all the elements
page_elements = [(element.y1, element) for element in page._objs]
# Sort all the elements as they appear in the page
page_elements.sort(key=lambda a: a[0], reverse=True)
# Find the elements that composed a page
for i,component in enumerate(page_elements):
# Extract the position of the top side of the element in the PDF
pos= component[0]
# Extract the element of the page layout
element = component[1]
# Check if the element is a text element
if isinstance(element, LTTextContainer):
# Check if the text appeared in a table
if table_extraction_flag == False:
# Use the function to extract the text and format for each text element
(line_text, format_per_line) = text_extraction(element)
# Append the text of each line to the page text
page_text.append(line_text)
# Append the format for each line containing text
line_format.append(format_per_line)
page_content.append(line_text)
else:
# Omit the text that appeared in a table
pass
# Create the key of the dictionary
dctkey = 'Page_'+str(pagenum)
# Add the list of list as the value of the page key
text_per_page[dctkey]= [page_text, line_format, text_from_images,text_from_tables, page_content]
# Closing the pdf file object
pdfFileObj.close()
return text_per_page
def upload_file(files):
print("here")
file_paths = [file.name for file in files]
return file_paths
with gr.Blocks() as demo:
file_output = gr.File()
upload_button = gr.UploadButton("Click to Upload a File", file_types=[".pdf"])
upload_button.upload(upload_file, upload_button, file_output)
pdf_path = file_output
demo.launch(debug=True)
text_per_page = read_pdf(pdf_path)
Page_0 = text_per_page['Page_0']
def nested_list_to_string(nested_list):
result = ''
for element in nested_list:
if isinstance(element, list): # Check if the element is a list
result += nested_list_to_string(element) # Recursively process the list
elif isinstance(element, str): # Check if the element is a string
result += element # Append the string to the result
return result
Page_0 = text_per_page['Page_0']
string_result = nested_list_to_string(Page_0)
def extract_abstract(page_0):
def nested_list_to_string(nested_list):
result = ''
for element in nested_list:
if isinstance(element, list): # Check if the element is a list
result += nested_list_to_string(element) # Recursively process the list
elif isinstance(element, str): # Check if the element is a string
result += element # Append the string to the result
return result
# Convert the nested list into a single string
full_text = nested_list_to_string(page_0)
# Find the start of the 'Abstract' section and the end of it (start of 'Introduction')
start_index = full_text.find('Abstract')
end_index = full_text.find('Introduction')
# If both 'Abstract' and 'Introduction' are found, extract the text in between
if start_index != -1 and end_index != -1:
# Extract the text and remove the word 'Abstract'
abstract_text = full_text[start_index + len('Abstract'):end_index]
return abstract_text.strip()
else:
return "Abstract or Introduction section not found."
# Example usage
Page_0 = text_per_page['Page_0']
abstract_text = extract_abstract(Page_0)
wall_of_text = abstract_text
result = summarizer(
wall_of_text,
min_length=1,
max_length=30,
no_repeat_ngram_size=3,
encoder_no_repeat_ngram_size=3,
repetition_penalty=3.5,
num_beams=4,
early_stopping=True,
)
# Access the first element of the list (which is the dictionary) and then the value of 'summary_text'
summary_string = result[0]['summary_text']
print(summary_string)
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
|