Spaces:
Runtime error
Runtime error
File size: 3,983 Bytes
360d784 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
from typing import Generator, Sequence
from metagpt.utils.token_counter import TOKEN_MAX, count_string_tokens
def reduce_message_length(msgs: Generator[str, None, None], model_name: str, system_text: str, reserved: int = 0,) -> str:
"""Reduce the length of concatenated message segments to fit within the maximum token size.
Args:
msgs: A generator of strings representing progressively shorter valid prompts.
model_name: The name of the encoding to use. (e.g., "gpt-3.5-turbo")
system_text: The system prompts.
reserved: The number of reserved tokens.
Returns:
The concatenated message segments reduced to fit within the maximum token size.
Raises:
RuntimeError: If it fails to reduce the concatenated message length.
"""
max_token = TOKEN_MAX.get(model_name, 2048) - count_string_tokens(system_text, model_name) - reserved
for msg in msgs:
if count_string_tokens(msg, model_name) < max_token:
return msg
raise RuntimeError("fail to reduce message length")
def generate_prompt_chunk(
text: str,
prompt_template: str,
model_name: str,
system_text: str,
reserved: int = 0,
) -> Generator[str, None, None]:
"""Split the text into chunks of a maximum token size.
Args:
text: The text to split.
prompt_template: The template for the prompt, containing a single `{}` placeholder. For example, "### Reference\n{}".
model_name: The name of the encoding to use. (e.g., "gpt-3.5-turbo")
system_text: The system prompts.
reserved: The number of reserved tokens.
Yields:
The chunk of text.
"""
paragraphs = text.splitlines(keepends=True)
current_token = 0
current_lines = []
reserved = reserved + count_string_tokens(prompt_template+system_text, model_name)
# 100 is a magic number to ensure the maximum context length is not exceeded
max_token = TOKEN_MAX.get(model_name, 2048) - reserved - 100
while paragraphs:
paragraph = paragraphs.pop(0)
token = count_string_tokens(paragraph, model_name)
if current_token + token <= max_token:
current_lines.append(paragraph)
current_token += token
elif token > max_token:
paragraphs = split_paragraph(paragraph) + paragraphs
continue
else:
yield prompt_template.format("".join(current_lines))
current_lines = [paragraph]
current_token = token
if current_lines:
yield prompt_template.format("".join(current_lines))
def split_paragraph(paragraph: str, sep: str = ".,", count: int = 2) -> list[str]:
"""Split a paragraph into multiple parts.
Args:
paragraph: The paragraph to split.
sep: The separator character.
count: The number of parts to split the paragraph into.
Returns:
A list of split parts of the paragraph.
"""
for i in sep:
sentences = list(_split_text_with_ends(paragraph, i))
if len(sentences) <= 1:
continue
ret = ["".join(j) for j in _split_by_count(sentences, count)]
return ret
return _split_by_count(paragraph, count)
def decode_unicode_escape(text: str) -> str:
"""Decode a text with unicode escape sequences.
Args:
text: The text to decode.
Returns:
The decoded text.
"""
return text.encode("utf-8").decode("unicode_escape", "ignore")
def _split_by_count(lst: Sequence , count: int):
avg = len(lst) // count
remainder = len(lst) % count
start = 0
for i in range(count):
end = start + avg + (1 if i < remainder else 0)
yield lst[start:end]
start = end
def _split_text_with_ends(text: str, sep: str = "."):
parts = []
for i in text:
parts.append(i)
if i == sep:
yield "".join(parts)
parts = []
if parts:
yield "".join(parts)
|