File size: 6,281 Bytes
1d409a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import torch
import torch.nn as nn
import torch.nn.functional as F
def conv_bn(inp, oup, stride=1, leaky=0):
return nn.Sequential(
nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup),
nn.LeakyReLU(negative_slope=leaky, inplace=True))
def conv_bn_no_relu(inp, oup, stride):
return nn.Sequential(
nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
nn.BatchNorm2d(oup),
)
def conv_bn1X1(inp, oup, stride, leaky=0):
return nn.Sequential(
nn.Conv2d(inp, oup, 1, stride, padding=0, bias=False), nn.BatchNorm2d(oup),
nn.LeakyReLU(negative_slope=leaky, inplace=True))
def conv_dw(inp, oup, stride, leaky=0.1):
return nn.Sequential(
nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False),
nn.BatchNorm2d(inp),
nn.LeakyReLU(negative_slope=leaky, inplace=True),
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
nn.LeakyReLU(negative_slope=leaky, inplace=True),
)
class SSH(nn.Module):
def __init__(self, in_channel, out_channel):
super(SSH, self).__init__()
assert out_channel % 4 == 0
leaky = 0
if (out_channel <= 64):
leaky = 0.1
self.conv3X3 = conv_bn_no_relu(in_channel, out_channel // 2, stride=1)
self.conv5X5_1 = conv_bn(in_channel, out_channel // 4, stride=1, leaky=leaky)
self.conv5X5_2 = conv_bn_no_relu(out_channel // 4, out_channel // 4, stride=1)
self.conv7X7_2 = conv_bn(out_channel // 4, out_channel // 4, stride=1, leaky=leaky)
self.conv7x7_3 = conv_bn_no_relu(out_channel // 4, out_channel // 4, stride=1)
def forward(self, input):
conv3X3 = self.conv3X3(input)
conv5X5_1 = self.conv5X5_1(input)
conv5X5 = self.conv5X5_2(conv5X5_1)
conv7X7_2 = self.conv7X7_2(conv5X5_1)
conv7X7 = self.conv7x7_3(conv7X7_2)
out = torch.cat([conv3X3, conv5X5, conv7X7], dim=1)
out = F.relu(out)
return out
class FPN(nn.Module):
def __init__(self, in_channels_list, out_channels):
super(FPN, self).__init__()
leaky = 0
if (out_channels <= 64):
leaky = 0.1
self.output1 = conv_bn1X1(in_channels_list[0], out_channels, stride=1, leaky=leaky)
self.output2 = conv_bn1X1(in_channels_list[1], out_channels, stride=1, leaky=leaky)
self.output3 = conv_bn1X1(in_channels_list[2], out_channels, stride=1, leaky=leaky)
self.merge1 = conv_bn(out_channels, out_channels, leaky=leaky)
self.merge2 = conv_bn(out_channels, out_channels, leaky=leaky)
def forward(self, input):
# names = list(input.keys())
# input = list(input.values())
output1 = self.output1(input[0])
output2 = self.output2(input[1])
output3 = self.output3(input[2])
up3 = F.interpolate(output3, size=[output2.size(2), output2.size(3)], mode='nearest')
output2 = output2 + up3
output2 = self.merge2(output2)
up2 = F.interpolate(output2, size=[output1.size(2), output1.size(3)], mode='nearest')
output1 = output1 + up2
output1 = self.merge1(output1)
out = [output1, output2, output3]
return out
class MobileNetV1(nn.Module):
def __init__(self):
super(MobileNetV1, self).__init__()
self.stage1 = nn.Sequential(
conv_bn(3, 8, 2, leaky=0.1), # 3
conv_dw(8, 16, 1), # 7
conv_dw(16, 32, 2), # 11
conv_dw(32, 32, 1), # 19
conv_dw(32, 64, 2), # 27
conv_dw(64, 64, 1), # 43
)
self.stage2 = nn.Sequential(
conv_dw(64, 128, 2), # 43 + 16 = 59
conv_dw(128, 128, 1), # 59 + 32 = 91
conv_dw(128, 128, 1), # 91 + 32 = 123
conv_dw(128, 128, 1), # 123 + 32 = 155
conv_dw(128, 128, 1), # 155 + 32 = 187
conv_dw(128, 128, 1), # 187 + 32 = 219
)
self.stage3 = nn.Sequential(
conv_dw(128, 256, 2), # 219 +3 2 = 241
conv_dw(256, 256, 1), # 241 + 64 = 301
)
self.avg = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(256, 1000)
def forward(self, x):
x = self.stage1(x)
x = self.stage2(x)
x = self.stage3(x)
x = self.avg(x)
# x = self.model(x)
x = x.view(-1, 256)
x = self.fc(x)
return x
class ClassHead(nn.Module):
def __init__(self, inchannels=512, num_anchors=3):
super(ClassHead, self).__init__()
self.num_anchors = num_anchors
self.conv1x1 = nn.Conv2d(inchannels, self.num_anchors * 2, kernel_size=(1, 1), stride=1, padding=0)
def forward(self, x):
out = self.conv1x1(x)
out = out.permute(0, 2, 3, 1).contiguous()
return out.view(out.shape[0], -1, 2)
class BboxHead(nn.Module):
def __init__(self, inchannels=512, num_anchors=3):
super(BboxHead, self).__init__()
self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 4, kernel_size=(1, 1), stride=1, padding=0)
def forward(self, x):
out = self.conv1x1(x)
out = out.permute(0, 2, 3, 1).contiguous()
return out.view(out.shape[0], -1, 4)
class LandmarkHead(nn.Module):
def __init__(self, inchannels=512, num_anchors=3):
super(LandmarkHead, self).__init__()
self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 10, kernel_size=(1, 1), stride=1, padding=0)
def forward(self, x):
out = self.conv1x1(x)
out = out.permute(0, 2, 3, 1).contiguous()
return out.view(out.shape[0], -1, 10)
def make_class_head(fpn_num=3, inchannels=64, anchor_num=2):
classhead = nn.ModuleList()
for i in range(fpn_num):
classhead.append(ClassHead(inchannels, anchor_num))
return classhead
def make_bbox_head(fpn_num=3, inchannels=64, anchor_num=2):
bboxhead = nn.ModuleList()
for i in range(fpn_num):
bboxhead.append(BboxHead(inchannels, anchor_num))
return bboxhead
def make_landmark_head(fpn_num=3, inchannels=64, anchor_num=2):
landmarkhead = nn.ModuleList()
for i in range(fpn_num):
landmarkhead.append(LandmarkHead(inchannels, anchor_num))
return landmarkhead
|